Optimizes LLM inference with NVIDIA TensorRT for maximum throughput and lowest latency. Use for production deployment on NVIDIA GPUs (A100/H100), when you need 10-100x faster inference than PyTorch, or for serving models with quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.
tensorrt-llm follows the SKILL.md standard. Use the install command to add it to your agent stack.
---
name: tensorrt-llm
description: Optimizes LLM inference with NVIDIA TensorRT for maximum throughput and lowest latency. Use for production deployment on NVIDIA GPUs (A100/H100), when you need 10-100x faster inference than PyTorch, or for serving models with quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Inference Serving, TensorRT-LLM, NVIDIA, Inference Optimization, High Throughput, Low Latency, Production, FP8, INT4, In-Flight Batching, Multi-GPU]
dependencies: [tensorrt-llm, torch]
---
# TensorRT-LLM
NVIDIA's open-source library for optimizing LLM inference with state-of-the-art performance on NVIDIA GPUs.
## When to use TensorRT-LLM
**Use TensorRT-LLM when:**
- Deploying on NVIDIA GPUs (A100, H100, GB200)
- Need maximum throughput (24,000+ tokens/sec on Llama 3)
- Require low latency for real-time applications
- Working with quantized models (FP8, INT4, FP4)
- Scaling across multiple GPUs or nodes
**Use vLLM instead when:**
- Need simpler setup and Python-first API
- Want PagedAttention without TensorRT compilation
- Working with AMD GPUs or non-NVIDIA hardware
**Use llama.cpp instead when:**
- Deploying on CPU or Apple Silicon
- Need edge deployment without NVIDIA GPUs
- Want simpler GGUF quantization format
## Quick start
### Installation
```bash
# Docker (recommended)
docker pull nvidia/tensorrt_llm:latest
# pip install
pip install tensorrt_llm==1.2.0rc3
# Requires CUDA 13.0.0, TensorRT 10.13.2, Python 3.10-3.12
```
### Basic inference
```python
from tensorrt_llm import LLM, SamplingParams
# Initialize model
llm = LLM(model="meta-llama/Meta-Llama-3-8B")
# Configure sampling
sampling_params = SamplingParams(
max_tokens=100,
temperature=0.7,
top_p=0.9
)
# Generate
prompts = ["Explain quantum computing"]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(output.text)
```
### Serving with trtllm-serve
```bash
# Start server (automatic model download and compilation)
trtllm-serve meta-llama/Meta-Llama-3-8B \
--tp_size 4 \ # Tensor parallelism (4 GPUs)
--max_batch_size 256 \
--max_num_tokens 4096
# Client request
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3-8B",
"messages": [{"role": "user", "content": "Hello!"}],
"temperature": 0.7,
"max_tokens": 100
}'
```
## Key features
### Performance optimizations
- **In-flight batching**: Dynamic batching during generation
- **Paged KV cache**: Efficient memory management
- **Flash Attention**: Optimized attention kernels
- **Quantization**: FP8, INT4, FP4 for 2-4× faster inference
- **CUDA graphs**: Reduced kernel launch overhead
### Parallelism
- **Tensor parallelism (TP)**: Split model across GPUs
- **Pipeline parallelism (PP)**: Layer-wise distribution
- **Expert parallelism**: For Mixture-of-Experts models
- **Multi-node**: Scale beyond single machine
### Advanced features
- **Speculative decoding**: Faster generation with draft models
- **LoRA serving**: Efficient multi-adapter deployment
- **Disaggregated serving**: Separate prefill and generation
## Common patterns
### Quantized model (FP8)
```python
from tensorrt_llm import LLM
# Load FP8 quantized model (2× faster, 50% memory)
llm = LLM(
model="meta-llama/Meta-Llama-3-70B",
dtype="fp8",
max_num_tokens=8192
)
# Inference same as before
outputs = llm.generate(["Summarize this article..."])
```
### Multi-GPU deployment
```python
# Tensor parallelism across 8 GPUs
llm = LLM(
model="meta-llama/Meta-Llama-3-405B",
tensor_parallel_size=8,
dtype="fp8"
)
```
### Batch inference
```python
# Process 100 prompts efficiently
prompts = [f"Question {i}: ..." for i in range(100)]
outputs = llm.generate(
prompts,
sampling_params=SamplingParams(max_tokens=200)
)
# Automatic in-flight batching for maximum throughput
```
## Performance benchmarks
**Meta Llama 3-8B** (H100 GPU):
- Throughput: 24,000 tokens/sec
- Latency: ~10ms per token
- vs PyTorch: **100× faster**
**Llama 3-70B** (8× A100 80GB):
- FP8 quantization: 2× faster than FP16
- Memory: 50% reduction with FP8
## Supported models
- **LLaMA family**: Llama 2, Llama 3, CodeLlama
- **GPT family**: GPT-2, GPT-J, GPT-NeoX
- **Qwen**: Qwen, Qwen2, QwQ
- **DeepSeek**: DeepSeek-V2, DeepSeek-V3
- **Mixtral**: Mixtral-8x7B, Mixtral-8x22B
- **Vision**: LLaVA, Phi-3-vision
- **100+ models** on HuggingFace
## References
- **[Optimization Guide](references/optimization.md)** - Quantization, batching, KV cache tuning
- **[Multi-GPU Setup](references/multi-gpu.md)** - Tensor/pipeline parallelism, multi-node
- **[Serving Guide](references/serving.md)** - Production deployment, monitoring, autoscaling
## Resources
- **Docs**: https://nvidia.github.io/TensorRT-LLM/
- **GitHub**: https://github.com/NVIDIA/TensorRT-LLM
- **Models**: https://huggingface.co/models?library=tensorrt_llm