Skillsmulti-model-validation
M

multi-model-validation

Run multiple AI models in parallel for 3-5x speedup with ENFORCED performance statistics tracking. Use when validating with Grok, Gemini, GPT-5, DeepSeek, MiniMax, Kimi, GLM, or Claudish proxy for code review, consensus analysis, or multi-expert validation. NEW in v3.2.0 - Direct API prefixes (mmax/, kimi/, glm/) for cost savings. Includes dynamic model discovery via `claudish --top-models` and `claudish --free`, session-based workspaces, and Pattern 7-8 for tracking model performance. Trigger keywords - "grok", "gemini", "gpt-5", "deepseek", "minimax", "kimi", "glm", "claudish", "multiple models", "parallel review", "external AI", "consensus", "multi-model", "model performance", "statistics", "free models".

MadAppGang
217 stars
4.3k downloads
Updated 1w ago

Readme

multi-model-validation follows the SKILL.md standard. Use the install command to add it to your agent stack.

---
name: multi-model-validation
description: Run multiple AI models in parallel for 3-5x speedup with ENFORCED performance statistics tracking. Use when validating with Grok, Gemini, GPT-5, DeepSeek, MiniMax, Kimi, GLM, or Claudish proxy for code review, consensus analysis, or multi-expert validation. NEW in v3.2.0 - Direct API prefixes (mmax/, kimi/, glm/) for cost savings. Includes dynamic model discovery via `claudish --top-models` and `claudish --free`, session-based workspaces, and Pattern 7-8 for tracking model performance. Trigger keywords - "grok", "gemini", "gpt-5", "deepseek", "minimax", "kimi", "glm", "claudish", "multiple models", "parallel review", "external AI", "consensus", "multi-model", "model performance", "statistics", "free models".
version: 3.2.0
tags: [orchestration, claudish, parallel, consensus, multi-model, grok, gemini, external-ai, statistics, performance, free-models, minimax, kimi, glm]
keywords: [grok, gemini, gpt-5, deepseek, claudish, parallel, consensus, multi-model, external-ai, proxy, openrouter, statistics, performance, quality-score, execution-time, free-models, top-models, minimax, kimi, glm, mmax, zhipu]
plugin: orchestration
updated: 2026-01-20
---

# Multi-Model Validation

**Version:** 3.2.0
**Purpose:** Patterns for running multiple AI models in parallel via Claudish proxy with dynamic model discovery, session-based workspaces, and performance statistics
**Status:** Production Ready

## Overview

Multi-model validation is the practice of running multiple AI models (Grok, Gemini, GPT-5, DeepSeek, etc.) in parallel to validate code, designs, or implementations from different perspectives. This achieves:

- **3-5x speedup** via parallel execution (15 minutes → 5 minutes)
- **Consensus-based prioritization** (issues flagged by all models are CRITICAL)
- **Diverse perspectives** (different models catch different issues)
- **Cost transparency** (know before you spend)
- **Free model discovery** (NEW v3.0) - find high-quality free models from trusted providers
- **Performance tracking** - identify slow/failing models for future exclusion
- **Data-driven recommendations** - optimize model shortlist based on historical performance

**Key Innovations:**

1. **Dynamic Model Discovery** (NEW v3.0) - Use `claudish --top-models` and `claudish --free` to get current available models with pricing
2. **Session-Based Workspaces** (NEW v3.0) - Each validation session gets a unique directory to prevent conflicts
3. **4-Message Pattern** - Ensures true parallel execution by using only Task tool calls in a single message
4. **Pattern 7-8** - Statistics collection and data-driven model recommendations

This skill is extracted from the `/review` command and generalized for use in any multi-model workflow.

---

## Related Skills

> **CRITICAL: Tracking Protocol Required**
>
> Before using any patterns in this skill, ensure you have completed the
> pre-launch setup from `orchestration:model-tracking-protocol`.
>
> Launching models without tracking setup = INCOMPLETE validation.

**Cross-References:**

- **orchestration:model-tracking-protocol** - MANDATORY tracking templates and protocols (NEW in v0.6.0)
  - Pre-launch checklist (8 required items)
  - Tracking table templates
  - Failure documentation format
  - Results presentation template
- **orchestration:quality-gates** - Approval gates and severity classification
- **orchestration:todowrite-orchestration** - Progress tracking during execution
- **orchestration:error-recovery** - Handling failures and retries

**Skill Integration:**

This skill (`multi-model-validation`) defines **execution patterns** (how to run models in parallel).
The `model-tracking-protocol` skill defines **tracking infrastructure** (how to collect and present results).

**Use both together:**
```yaml
skills: orchestration:multi-model-validation, orchestration:model-tracking-protocol
```

---

## Core Patterns

### Pattern 0: Session Setup and Model Discovery (NEW v3.0)

**Purpose:** Create isolated session workspace and discover available models dynamically.

**Why Session-Based Workspaces:**

Using a fixed directory like `ai-docs/reviews/` causes problems:
- ❌ Multiple sessions overwrite each other's files
- ❌ Stale data from previous sessions pollutes results
- ❌ Hard to track which files belong to which session

Instead, create a **unique session directory** for each validation:

```bash
# Generate unique session ID
SESSION_ID="review-$(date +%Y%m%d-%H%M%S)-$(head -c 4 /dev/urandom | xxd -p)"
SESSION_DIR="/tmp/${SESSION_ID}"

# Create session workspace
mkdir -p "$SESSION_DIR"

# Export for use by agents
export SESSION_ID SESSION_DIR

echo "Session: $SESSION_ID"
echo "Directory: $SESSION_DIR"

# Example output:
# Session: review-20251212-143052-a3f2
# Directory: /tmp/review-20251212-143052-a3f2
```

**Benefits:**
- ✅ Each session is isolated (no cross-contamination)
- ✅ Easy cleanup (`rm -rf $SESSION_DIR` when done)
- ✅ Session ID can be used for tracking in statistics
- ✅ Parallel sessions don't conflict

---

**Dynamic Model Discovery:**

**NEVER hardcode model lists.** Models change frequently - new ones appear, old ones deprecate, pricing updates. Instead, use `claudish` to get current available models:

```bash
# Get top paid models (best value for money)
claudish --top-models

# Example output:
#   google/gemini-3-pro-preview    Google     $7.00/1M   1048K   🔧 🧠 👁️
#   openai/gpt-5.1-codex           Openai     $5.63/1M   400K    🔧 🧠 👁️
#   x-ai/grok-code-fast-1          X-ai       $0.85/1M   256K    🔧 🧠
#   minimax/minimax-m2             Minimax    $0.64/1M   262K    🔧 🧠
#   z-ai/glm-4.6                   Z-ai       $1.07/1M   202K    🔧 🧠
#   qwen/qwen3-vl-235b-a22b-ins... Qwen       $0.70/1M   262K    🔧    👁️

# Get free models from trusted providers
claudish --free

# Example output:
#   google/gemini-2.0-flash-exp:free  Google     FREE      1049K   ✓ · ✓
#   mistralai/devstral-2512:free      Mistralai  FREE      262K    ✓ · ·
#   qwen/qwen3-coder:free             Qwen       FREE      262K    ✓ · ·
#   qwen/qwen3-235b-a22b:free         Qwen       FREE      131K    ✓ ✓ ·
#   openai/gpt-oss-120b:free          Openai     FREE      131K    ✓ ✓ ·
```

**Recommended Free Models for Code Review:**

| Model | Provider | Context | Capabilities | Why Good |
|-------|----------|---------|--------------|----------|
| `qwen/qwen3-coder:free` | Qwen | 262K | Tools ✓ | Coding-specialized, large context |
| `mistralai/devstral-2512:free` | Mistral | 262K | Tools ✓ | Dev-focused, excellent for code |
| `qwen/qwen3-235b-a22b:free` | Qwen | 131K | Tools ✓ Reasoning ✓ | Massive 235B model, reasoning |

**Model Selection Flow:**

```
1. Load Historical Performance (if exists)
   → Read ai-docs/llm-performance.json
   → Get avg speed, quality, success rate per model

2. Discover Available Models
   → Run: claudish --top-models (paid)
   → Run: claudish --free (free tier)

3. Merge with Historical Data
   → Add performance metrics to model list
   → Flag: "⚡ Fast", "🎯 High Quality", "⚠️ Slow", "❌ Unreliable"

4. Present to User (AskUserQuestion)
   → Show: Model | Provider | Price | Avg Speed | Quality
   → Suggest internal reviewer (ALWAYS)
   → Highlight top performers
   → Include 1-2 free models for comparison

5. User Selects Models
   → Minimum: 1 internal + 1 external
   → Recommended: 1 internal + 2-3 external
```

### ⚠️ Prefix Collision Awareness

**CRITICAL:** When using claudish, be aware of model ID prefix routing.

Claudish routes to different backends based on model ID prefix:

| Prefix | Backend | Required Key |
|--------|---------|--------------|
| (none) | OpenRouter | `OPENROUTER_API_KEY` |
| `g/` `gemini/` | Google Gemini API | `GEMINI_API_KEY` |
| `oai/` | OpenAI Direct API | `OPENAI_API_KEY` |
| `mmax/` `mm/` | MiniMax Direct API | `MINIMAX_API_KEY` |
| `kimi/` `moonshot/` | Kimi Direct API | `KIMI_API_KEY` |
| `glm/` `zhipu/` | GLM Direct API | `GLM_API_KEY` |
| `ollama/` | Ollama (local) | None |
| `lmstudio/` | LM Studio (local) | None |
| `vllm/` | vLLM (local) | None |
| `mlx/` | MLX (local) | None |

**Collision-Free Models (safe for OpenRouter):**
- `x-ai/grok-code-fast-1` ✅
- `google/gemini-*` ✅ (use `g/` for Gemini Direct)
- `deepseek/deepseek-chat` ✅
- `minimax/*` ✅ (use `mmax/` for MiniMax Direct)
- `qwen/qwen3-coder:free` ✅
- `mistralai/devstral-2512:free` ✅
- `moonshotai/*` ✅ (use `kimi/` for Kimi Direct)
- `z-ai/glm-*` ✅ (use `glm/` for GLM Direct)
- `openai/*` ✅ (use `oai/` for OpenAI Direct)
- `anthropic/claude-*` ✅

**Direct API prefixes for cost savings:**
| OpenRouter Model | Direct API Prefix | API Key Required |
|------------------|-------------------|------------------|
| `openai/gpt-*` | `oai/gpt-*` | `OPENAI_API_KEY` |
| `google/gemini-*` | `g/gemini-*` | `GEMINI_API_KEY` |
| `minimax/*` | `mmax/*` | `MINIMAX_API_KEY` |
| `moonshotai/*` | `kimi/*` | `KIMI_API_KEY` |
| `z-ai/glm-*` | `glm/*` | `GLM_API_KEY` |

**Rule:** OpenRouter models work without prefix. Use direct API prefixes for cost savings when you have the corresponding API key.

**Interactive Model Selection (AskUserQuestion with multiSelect):**

**CRITICAL:** Use AskUserQuestion tool with `multiSelect: true` to let users choose models interactively. This provides a better UX than just showing recommendations.

```typescript
// Use AskUserQuestion to let user select models
AskUserQuestion({
  questions: [{
    question: "Which external models should validate your code? (Internal Claude reviewer always included)",
    header: "Models",
    multiSelect: true,
    options: [
      // Top paid (from claudish --top-models + historical data)
      {
        label: "x-ai/grok-code-fast-1 ⚡",
        description: "$0.85/1M | Quality: 87% | Avg: 42s | Fast + accurate"
      },
      {
        label: "google/gemini-3-pro-preview",
        description: "$7.00/1M | Quality: 91% | Avg: 55s | High accuracy"
      },
      // Free models (from claudish --free)
      {
        label: "qwen/qwen3-coder:free 🆓",
        description: "FREE | Quality: 82% | 262K context | Coding-specialized"
      },
      {
        label: "mistralai/devstral-2512:free 🆓",
        description: "FREE | 262K context | Dev-focused, new model"
      }
    ]
  }]
})
```

**Remember Selection for Session:**

Store the user's model selection in the session directory so it persists throughout the validation:

```bash
# After user selects models, save to session
save_session_models() {
  local session_dir="$1"
  shift
  local models=("$@")

  # Always include internal reviewer
  echo "claude-embedded" > "$session_dir/selected-models.txt"

  # Add user-selected models
  for model in "${models[@]}"; do
    echo "$model" >> "$session_dir/selected-models.txt"
  done

  echo "Session models saved to $session_dir/selected-models.txt"
}

# Load session models for subsequent operations
load_session_models() {
  local session_dir="$1"
  cat "$session_dir/selected-models.txt"
}

# Usage:
# After AskUserQuestion returns selected models
save_session_models "$SESSION_DIR" "x-ai/grok-code-fast-1" "qwen/qwen3-coder:free"

# Later in the session, retrieve the selection
MODELS=$(load_session_models "$SESSION_DIR")
```

**Session Model Memory Structure:**

```
$SESSION_DIR/
├── selected-models.txt    # User's model selection (persists for session)
├── code-context.md        # Code being reviewed
├── claude-review.md       # Internal review
├── grok-review.md         # External review (if selected)
├── qwen-coder-review.md   # External review (if selected)
└── consolidated-review.md # Final consolidated review
```

**Why Remember the Selection:**

1. **Re-runs**: If validation needs to be re-run, use same models
2. **Consistency**: All phases of validation use identical model set
3. **Audit trail**: Know which models produced which results
4. **Cost tracking**: Accurate cost attribution per session

**Always Include Internal Reviewer:**

```
BEST PRACTICE: Always run internal Claude reviewer alongside external models.

Why?
✓ FREE (embedded Claude, no API costs)
✓ Fast baseline (usually fastest)
✓ Provides comparison point
✓ Works even if ALL external models fail
✓ Consistent behavior (same model every time)

The internal reviewer should NEVER be optional - it's your safety net.
```

---

### Pattern 1: The 4-Message Pattern (MANDATORY)

This pattern is **CRITICAL** for achieving true parallel execution with multiple AI models.

**Why This Pattern Exists:**

Claude Code executes tools **sequentially by default** when different tool types are mixed in the same message. To achieve true parallelism, you MUST:
1. Use ONLY one tool type per message
2. Ensure all Task calls are in a single message
3. Separate preparation (Bash) from execution (Task) from presentation

**The Pattern:**

```
Message 1: Preparation (Bash Only)
  - Create workspace directories
  - Validate inputs (check if claudish installed)
  - Write context files (code to review, design reference, etc.)
  - NO Task calls
  - NO TodoWrite calls

Message 2: Parallel Execution (Task Only)
  - Launch ALL AI models in SINGLE message
  - ONLY Task tool calls
  - Separate each Task with --- delimiter
  - Each Task is independent (no dependencies)
  - All execute simultaneously

Message 3: Auto-Consolidation (Task Only)
  - Automatically triggered when N ≥ 2 models complete
  - Launch consolidation agent
  - Pass all review file paths
  - Apply consensus analysis

Message 4: Present Results
  - Show user prioritized issues
  - Include consensus levels (unanimous, strong, majority)
  - Link to detailed reports
  - Cost summary (if applicable)
```

**Example: 5-Model Parallel Code Review**

```
Message 1: Preparation (Session Setup + Model Discovery)
  # Create unique session workspace
  Bash: SESSION_ID="review-$(date +%Y%m%d-%H%M%S)-$(head -c 4 /dev/urandom | xxd -p)"
  Bash: SESSION_DIR="/tmp/${SESSION_ID}" && mkdir -p "$SESSION_DIR"
  Bash: git diff > "$SESSION_DIR/code-context.md"

  # Discover available models
  Bash: claudish --top-models  # See paid options
  Bash: claudish --free        # See free options

  # User selects models via AskUserQuestion (see Pattern 0)

Message 2: Parallel Execution (ONLY Task calls - single message)
  Task: senior-code-reviewer
    Prompt: "Review $SESSION_DIR/code-context.md for security issues.
             Write detailed review to $SESSION_DIR/claude-review.md
             Return only brief summary."
  ---
  Task: codex-code-reviewer PROXY_MODE: x-ai/grok-code-fast-1
    Prompt: "Review $SESSION_DIR/code-context.md for security issues.
             Write detailed review to $SESSION_DIR/grok-review.md
             Return only brief summary."
  ---
  Task: codex-code-reviewer PROXY_MODE: qwen/qwen3-coder:free
    Prompt: "Review $SESSION_DIR/code-context.md for security issues.
             Write detailed review to $SESSION_DIR/qwen-coder-review.md
             Return only brief summary."
  ---
  Task: codex-code-reviewer PROXY_MODE: openai/gpt-5.1-codex
    Prompt: "Review $SESSION_DIR/code-context.md for security issues.
             Write detailed review to $SESSION_DIR/gpt5-review.md
             Return only brief summary."
  ---
  Task: codex-code-reviewer PROXY_MODE: mistralai/devstral-2512:free
    Prompt: "Review $SESSION_DIR/code-context.md for security issues.
             Write detailed review to $SESSION_DIR/devstral-review.md
             Return only brief summary."

  All 5 models execute simultaneously (5x parallelism!)

Message 3: Auto-Consolidation
  (Automatically triggered - don't wait for user to request)

  Task: senior-code-reviewer
    Prompt: "Consolidate 5 code reviews from:
             - $SESSION_DIR/claude-review.md
             - $SESSION_DIR/grok-review.md
             - $SESSION_DIR/qwen-coder-review.md
             - $SESSION_DIR/gpt5-review.md
             - $SESSION_DIR/devstral-review.md

             Apply consensus analysis:
             - Issues flagged by ALL 5 → UNANIMOUS (VERY HIGH confidence)
             - Issues flagged by 4 → STRONG (HIGH confidence)
             - Issues flagged by 3 → MAJORITY (MEDIUM confidence)
             - Issues flagged by 1-2 → DIVERGENT (LOW confidence)

             Prioritize by consensus level and severity.
             Write to $SESSION_DIR/consolidated-review.md"

Message 4: Present Results + Update Statistics
  # Track performance for each model (see Pattern 7)
  track_model_performance "claude-embedded" "success" 32 8 95
  track_model_performance "x-ai/grok-code-fast-1" "success" 45 6 87
  track_model_performance "qwen/qwen3-coder:free" "success" 52 5 82
  track_model_performance "openai/gpt-5.1-codex" "success" 68 7 89
  track_model_performance "mistralai/devstral-2512:free" "success" 48 5 84

  # Record session summary
  record_session_stats 5 5 0 68 245 3.6

  "Multi-model code review complete! 5 AI models analyzed your code.
   Session: $SESSION_ID

   Top 5 Issues (Prioritized by Consensus):
   1. [UNANIMOUS] Missing input validation on POST /api/users
   2. [UNANIMOUS] SQL injection risk in search endpoint
   3. [STRONG] Weak password hashing (bcrypt rounds too low)
   4. [MAJORITY] Missing rate limiting on authentication endpoints
   5. [MAJORITY] Insufficient error handling in payment flow

   Model Performance (this session):
   | Model                          | Time | Issues | Quality | Cost   |
   |--------------------------------|------|--------|---------|--------|
   | claude-embedded                | 32s  | 8      | 95%     | FREE   |
   | x-ai/grok-code-fast-1          | 45s  | 6      | 87%     | $0.002 |
   | qwen/qwen3-coder:free          | 52s  | 5      | 82%     | FREE   |
   | openai/gpt-5.1-codex        | 68s  | 7      | 89%     | $0.015 |
   | mistralai/devstral-2512:free   | 48s  | 5      | 84%     | FREE   |

   Parallel Speedup: 3.6x (245s sequential → 68s parallel)

   See $SESSION_DIR/consolidated-review.md for complete analysis.
   Performance logged to ai-docs/llm-performance.json"
```

**Performance Impact:**

- Sequential execution: 5 models × 3 min = 15 minutes
- Parallel execution: max(model times) ≈ 5 minutes
- **Speedup: 3x with perfect parallelism**

---

### Pattern 2: Parallel Execution Architecture

**Single Message, Multiple Tasks:**

The key to parallel execution is putting ALL Task calls in a **single message** with the `---` delimiter:

```
✅ CORRECT - Parallel Execution:

Task: agent1
  Prompt: "Task 1 instructions"
---
Task: agent2
  Prompt: "Task 2 instructions"
---
Task: agent3
  Prompt: "Task 3 instructions"

All 3 execute simultaneously.
```

**Anti-Pattern: Sequential Execution**

```
❌ WRONG - Sequential Execution:

Message 1:
  Task: agent1

Message 2:
  Task: agent2

Message 3:
  Task: agent3

Each task waits for previous to complete (3x slower).
```

**Independent Tasks Requirement:**

Each Task must be **independent** (no dependencies):

```
✅ CORRECT - Independent:
  Task: review code for security
  Task: review code for performance
  Task: review code for style

  All can run simultaneously (same input, different perspectives).

❌ WRONG - Dependent:
  Task: implement feature
  Task: write tests for feature (depends on implementation)
  Task: review implementation (depends on tests)

  Must run sequentially (each needs previous output).
```

**Unique Output Files:**

Each Task MUST write to a **unique output file** within the session directory:

```
✅ CORRECT - Unique Files in Session Directory:
  Task: reviewer1 → $SESSION_DIR/claude-review.md
  Task: reviewer2 → $SESSION_DIR/grok-review.md
  Task: reviewer3 → $SESSION_DIR/qwen-coder-review.md

❌ WRONG - Shared File:
  Task: reviewer1 → $SESSION_DIR/review.md
  Task: reviewer2 → $SESSION_DIR/review.md (overwrites reviewer1!)
  Task: reviewer3 → $SESSION_DIR/review.md (overwrites reviewer2!)

❌ WRONG - Fixed Directory (not session-based):
  Task: reviewer1 → ai-docs/reviews/claude-review.md  # May conflict with other sessions!
```

**Wait for All Before Consolidation:**

Do NOT consolidate until ALL tasks complete:

```
✅ CORRECT - Wait for All:
  Launch: Task1, Task2, Task3, Task4 (parallel)
  Wait: All 4 complete
  Check: results.filter(r => r.status === 'fulfilled').length
  If >= 2: Proceed with consolidation
  If < 2: Offer retry or abort

❌ WRONG - Premature Consolidation:
  Launch: Task1, Task2, Task3, Task4
  After 30s: Task1, Task2 done
  Consolidate: Only Task1 + Task2 (Task3, Task4 still running!)
```

---

### Pattern 3: Proxy Mode Implementation

**PROXY_MODE Directive:**

External AI models are invoked via the PROXY_MODE directive in agent prompts:

```
Task: codex-code-reviewer PROXY_MODE: x-ai/grok-code-fast-1
  Prompt: "Review code for security issues..."
```

**Agent Behavior:**

When an agent sees PROXY_MODE, it:

```
1. Detects PROXY_MODE directive in incoming prompt
2. Extracts model name (e.g., "x-ai/grok-code-fast-1")
3. Extracts actual task (everything after PROXY_MODE line)
4. Constructs claudish command:
   printf '%s' "AGENT_PROMPT" | claudish --model x-ai/grok-code-fast-1 --stdin --quiet
5. Executes SYNCHRONOUSLY (blocking, waits for full response)
6. Captures full output
7. Writes detailed results to file (ai-docs/grok-review.md)
8. Returns BRIEF summary only (2-5 sentences)
```

**Critical: Blocking Execution**

External model calls MUST be **synchronous (blocking)** so the agent waits for completion:

```
✅ CORRECT - Blocking (Synchronous):
  RESULT=$(printf '%s' "$PROMPT" | claudish --model grok --stdin --quiet)
  echo "$RESULT" > ai-docs/grok-review.md
  echo "Grok review complete. See ai-docs/grok-review.md"

❌ WRONG - Background (Asynchronous):
  printf '%s' "$PROMPT" | claudish --model grok --stdin --quiet &
  echo "Grok review started..."  # Agent returns immediately, review not done!
```

**Why Blocking Matters:**

If agents return before external models complete, the orchestrator will:
- Think all reviews are done (they're not)
- Try to consolidate partial results (missing data)
- Present incomplete results to user (bad experience)

**Output Strategy:**

Agents write **full detailed output to file** and return **brief summary only**:

```
Full Output (ai-docs/grok-review.md):
  "# Code Review by Grok

   ## Security Issues

   ### CRITICAL: SQL Injection in User Search
   The search endpoint constructs SQL queries using string concatenation...
   [500 more lines of detailed analysis]"

Brief Summary (returned to orchestrator):
  "Grok review complete. Found 3 CRITICAL, 5 HIGH, 12 MEDIUM issues.
   See ai-docs/grok-review.md for details."
```

**Why Brief Summaries:**

- Orchestrator doesn't need full 500-line review in context
- Full review is in file for consolidation agent
- Keeps orchestrator context clean (context efficiency)

**Auto-Approve Behavior:**

Claudish auto-approves by default (non-interactive mode for scripting). Use `--no-auto-approve` only if you need interactive confirmation:

```
✅ CORRECT - Auto-approve is default, no flag needed:
  claudish --model grok --stdin --quiet

⚠️ Interactive mode (requires user input, avoid in agents):
  claudish --model grok --stdin --quiet --no-auto-approve
  # Prompts user for approval - don't use inside agents!
```

### PROXY_MODE-Enabled Agents Reference

**CRITICAL**: Only these agents support PROXY_MODE. Using other agents (like `general-purpose`) will NOT work correctly.

#### Supported Agents by Plugin

**agentdev plugin (3 agents)**

| Agent | subagent_type | Best For |
|-------|---------------|----------|
| `reviewer` | `agentdev:reviewer` | Implementation quality reviews |
| `architect` | `agentdev:architect` | Design plan reviews |
| `developer` | `agentdev:developer` | Implementation with external models |

**frontend plugin (8 agents)**

| Agent | subagent_type | Best For |
|-------|---------------|----------|
| `plan-reviewer` | `frontend:plan-reviewer` | Architecture plan validation |
| `reviewer` | `frontend:reviewer` | Code reviews |
| `architect` | `frontend:architect` | Architecture design |
| `designer` | `frontend:designer` | Design reviews |
| `developer` | `frontend:developer` | Full-stack implementation |
| `ui-developer` | `frontend:ui-developer` | UI implementation reviews |
| `css-developer` | `frontend:css-developer` | CSS architecture & styling |
| `test-architect` | `frontend:test-architect` | Testing strategy & implementation |

**seo plugin (5 agents)**

| Agent | subagent_type | Best For |
|-------|---------------|----------|
| `editor` | `seo:editor` | SEO content reviews |
| `writer` | `seo:writer` | Content generation |
| `analyst` | `seo:analyst` | Analysis tasks |
| `researcher` | `seo:researcher` | Research & data gathering |
| `data-analyst` | `seo:data-analyst` | Data analysis & insights |

**Total: 18 PROXY_MODE-enabled agents**

#### How to Check if an Agent Supports PROXY_MODE

Look for `<proxy_mode_support>` in the agent's definition file:

```bash
grep -l "proxy_mode_support" plugins/*/agents/*.md
```

#### Common Mistakes

| ❌ WRONG | ✅ CORRECT | Why |
|----------|-----------|-----|
| `subagent_type: "general-purpose"` | `subagent_type: "agentdev:reviewer"` | general-purpose has no PROXY_MODE |
| `subagent_type: "Explore"` | `subagent_type: "agentdev:architect"` | Explore is for exploration, not reviews |
| Prompt: "Run claudish with model X" | Prompt: "PROXY_MODE: model-x\n\n[task]" | Don't tell agent to run claudish, use directive |

#### Correct Pattern Example

```typescript
// ✅ CORRECT: Use PROXY_MODE-enabled agent with directive
Task({
  subagent_type: "agentdev:reviewer",
  description: "Grok design review",
  run_in_background: true,
  prompt: `PROXY_MODE: x-ai/grok-code-fast-1

Review the design plan at ai-docs/feature-design.md

Focus on:
1. Completeness
2. Missing considerations
3. Potential issues
4. Implementation risks`
})

// ❌ WRONG: Using general-purpose and instructing to run claudish
Task({
  subagent_type: "general-purpose",
  description: "Grok design review",
  prompt: `Review using Grok via claudish:
  npx claudish --model x-ai/grok-code-fast-1 ...`
})
```

---

### Pattern 4: Cost Estimation and Transparency

**Input/Output Token Separation:**

Provide separate estimates for input and output tokens:

```
Cost Estimation for Multi-Model Review:

Input Tokens (per model):
  - Code context: 500 lines × 1.5 = 750 tokens
  - Review instructions: 200 tokens
  - Total input per model: ~1000 tokens
  - Total input (5 models): 5,000 tokens

Output Tokens (per model):
  - Expected output: 2,000 - 4,000 tokens
  - Total output (5 models): 10,000 - 20,000 tokens

Cost Calculation (example rates):
  - Input: 5,000 tokens × $0.0001/1k = $0.0005
  - Output: 15,000 tokens × $0.0005/1k = $0.0075 (3-5x more expensive)
  - Total: $0.0080 (range: $0.0055 - $0.0105)

User Approval Gate:
  "Multi-model review will cost approximately $0.008 ($0.005 - $0.010).
   Proceed? (Yes/No)"
```

**Input Token Estimation Formula:**

```
Input Tokens = (Code Lines × 1.5) + Instruction Tokens

Why 1.5x multiplier?
  - Code lines: ~1 token per line (average)
  - Context overhead: +50% (imports, comments, whitespace)

Example:
  500 lines of code → 500 × 1.5 = 750 tokens
  + 200 instruction tokens = 950 tokens total input
```

**Output Token Estimation Formula:**

```
Output Tokens = Base Estimate + Complexity Factor

Base Estimates by Task Type:
  - Code review: 2,000 - 4,000 tokens
  - Design validation: 1,000 - 2,000 tokens
  - Architecture planning: 3,000 - 6,000 tokens
  - Bug investigation: 2,000 - 5,000 tokens

Complexity Factors:
  - Simple (< 100 lines code): Use low end of range
  - Medium (100-500 lines): Use mid-range
  - Complex (> 500 lines): Use high end of range

Example:
  400 lines of complex code → 4,000 tokens (high complexity)
  50 lines of simple code → 2,000 tokens (low complexity)
```

**Range-Based Estimates:**

Always provide a **range** (min-max), not a single number:

```
✅ CORRECT - Range:
  "Estimated cost: $0.005 - $0.010 (depends on review depth)"

❌ WRONG - Single Number:
  "Estimated cost: $0.0075"
  (User surprised when actual is $0.0095)
```

**Why Output Costs More:**

Output tokens are typically **3-5x more expensive** than input tokens:

```
Example Pricing (OpenRouter):
  - Grok: $0.50 / 1M input, $1.50 / 1M output (3x difference)
  - Gemini Flash: $0.10 / 1M input, $0.40 / 1M output (4x difference)
  - GPT-5 Codex: $1.00 / 1M input, $5.00 / 1M output (5x difference)

Impact:
  If input = 5,000 tokens, output = 15,000 tokens:
    Input cost: $0.0005
    Output cost: $0.0075 (15x higher despite only 3x more tokens)
    Total: $0.0080 (94% is output!)
```

**User Approval Before Execution:**

ALWAYS ask for user approval before expensive operations:

```
Present to user:
  "You selected 5 AI models for code review:
   - Claude Sonnet (embedded, free)
   - Grok Code Fast (external, $0.002)
   - Gemini 2.5 Flash (external, $0.001)
   - GPT-5 Codex (external, $0.004)
   - DeepSeek Coder (external, $0.001)

   Estimated total cost: $0.008 ($0.005 - $0.010)

   Proceed with multi-model review? (Yes/No)"

If user says NO:
  Offer alternatives:
    1. Use only free embedded Claude
    2. Select fewer models
    3. Cancel review

If user says YES:
  Proceed with Message 2 (parallel execution)
```

---

### Pattern 5: Auto-Consolidation Logic

**Automatic Trigger:**

Consolidation should happen **automatically** when N ≥ 2 reviews complete:

```
✅ CORRECT - Auto-Trigger:

const results = await Promise.allSettled([task1, task2, task3, task4, task5]);
const successful = results.filter(r => r.status === 'fulfilled');

if (successful.length >= 2) {
  // Auto-trigger consolidation (DON'T wait for user to ask)
  const consolidated = await Task({
    subagent_type: "senior-code-reviewer",
    description: "Consolidate reviews",
    prompt: `Consolidate ${successful.length} reviews and apply consensus analysis`
  });

  return formatResults(consolidated);
} else {
  // Too few successful reviews
  notifyUser("Only 1 model succeeded. Retry failures or abort?");
}

❌ WRONG - Wait for User:

const results = await Promise.allSettled([...]);
const successful = results.filter(r => r.status === 'fulfilled');

// Present results to user
notifyUser("3 reviews complete. Would you like me to consolidate them?");
// Waits for user to request consolidation...
```

**Why Auto-Trigger:**

- Better UX (no extra user prompt needed)
- Faster workflow (no wait for user response)
- Expected behavior (user assumes consolidation is part of workflow)

**Minimum Threshold:**

Require **at least 2 successful reviews** for meaningful consensus:

```
if (successful.length >= 2) {
  // Proceed with consolidation
} else if (successful.length === 1) {
  // Only 1 review succeeded
  notifyUser("Only 1 model succeeded. No consensus available. See single review or retry?");
} else {
  // All failed
  notifyUser("All models failed. Check logs and retry?");
}
```

**Pass All Review File Paths:**

Consolidation agent needs paths to ALL review files within the session directory:

```
Task: senior-code-reviewer
  Prompt: "Consolidate reviews from these files:
           - $SESSION_DIR/claude-review.md
           - $SESSION_DIR/grok-review.md
           - $SESSION_DIR/qwen-coder-review.md

           Apply consensus analysis and prioritize issues."
```

**Don't Inline Full Reviews:**

```
❌ WRONG - Inline Reviews (context pollution):
  Prompt: "Consolidate these reviews:

           Claude Review:
           [500 lines of review content]

           Grok Review:
           [500 lines of review content]

           Qwen Review:
           [500 lines of review content]"

✅ CORRECT - File Paths in Session Directory:
  Prompt: "Read and consolidate reviews from:
           - $SESSION_DIR/claude-review.md
           - $SESSION_DIR/grok-review.md
           - $SESSION_DIR/qwen-coder-review.md"
```

---

### Pattern 6: Consensus Analysis

**Consensus Levels:**

Classify issues by how many models flagged them:

```
Consensus Levels (for N models):

UNANIMOUS (100% agreement):
  - All N models flagged this issue
  - VERY HIGH confidence
  - MUST FIX priority

STRONG CONSENSUS (67-99% agreement):
  - Most models flagged this issue (⌈2N/3⌉ to N-1)
  - HIGH confidence
  - RECOMMENDED priority

MAJORITY (50-66% agreement):
  - Half or more models flagged this issue (⌈N/2⌉ to ⌈2N/3⌉-1)
  - MEDIUM confidence
  - CONSIDER priority

DIVERGENT (< 50% agreement):
  - Only 1-2 models flagged this issue
  - LOW confidence
  - OPTIONAL priority (may be model-specific perspective)
```

**Example: 5 Models**

```
Issue Flagged By:              Consensus Level:    Priority:
─────────────────────────────────────────────────────────────
All 5 models                   UNANIMOUS (100%)    MUST FIX
4 models                       STRONG (80%)        RECOMMENDED
3 models                       MAJORITY (60%)      CONSIDER
2 models                       DIVERGENT (40%)     OPTIONAL
1 model                        DIVERGENT (20%)     OPTIONAL
```

**Keyword-Based Matching (v1.0):**

Simple consensus analysis using keyword matching:

```
Algorithm:

1. Extract issues from each review
2. For each unique issue:
   a. Identify keywords (e.g., "SQL injection", "input validation")
   b. Check which other reviews mention same keywords
   c. Count models that flagged this issue
   d. Assign consensus level

Example:

Claude Review: "Missing input validation on POST /api/users"
Grok Review: "Input validation absent in user creation endpoint"
Gemini Review: "No validation for user POST endpoint"

Keywords: ["input validation", "POST", "/api/users", "user"]
Match: All 3 reviews mention these keywords
Consensus: UNANIMOUS (3/3 = 100%)
```

**Model Agreement Matrix:**

Show which models agree on which issues:

```
Issue Matrix:

Issue                             Claude  Grok  Gemini  GPT-5  DeepSeek  Consensus
──────────────────────────────────────────────────────────────────────────────────
SQL injection in search              ✓      ✓     ✓       ✓       ✓      UNANIMOUS
Missing input validation             ✓      ✓     ✓       ✓       ✗      STRONG
Weak password hashing                ✓      ✓     ✓       ✗       ✗      MAJORITY
Missing rate limiting                ✓      ✓     ✗       ✗       ✗      DIVERGENT
Insufficient error handling          ✓      ✗     ✗       ✗       ✗      DIVERGENT
```

**Prioritized Issue List:**

Sort issues by consensus level, then by severity:

```
Top 10 Issues (Prioritized):

1. [UNANIMOUS - CRITICAL] SQL injection in search endpoint
   Flagged by: Claude, Grok, Gemini, GPT-5, DeepSeek (5/5)

2. [UNANIMOUS - HIGH] Missing input validation on POST /api/users
   Flagged by: Claude, Grok, Gemini, GPT-5, DeepSeek (5/5)

3. [STRONG - HIGH] Weak password hashing (bcrypt rounds too low)
   Flagged by: Claude, Grok, Gemini, GPT-5 (4/5)

4. [STRONG - MEDIUM] Missing rate limiting on auth endpoints
   Flagged by: Claude, Grok, Gemini, GPT-5 (4/5)

5. [MAJORITY - MEDIUM] Insufficient error handling in payment flow
   Flagged by: Claude, Grok, Gemini (3/5)

... (remaining issues)
```

**Future Enhancement (v1.1+): Semantic Similarity**

```
Instead of keyword matching, use semantic similarity:
  - Embed issue descriptions with sentence-transformers
  - Calculate cosine similarity between embeddings
  - Issues with >0.8 similarity are "same issue"
  - More accurate consensus detection
```

---

### Pattern 7: Statistics Collection and Analysis

**Purpose**: Track model performance to help users identify slow or poorly-performing models for future exclusion.

**Storage Location**: `ai-docs/llm-performance.json` (persistent across all sessions)

**When to Collect Statistics:**
- After each model completes (success, failure, or timeout)
- During consolidation phase (quality scores)
- At session end (session summary)

**File Structure (ai-docs/llm-performance.json):**

```json
{
  "schemaVersion": "2.0.0",
  "lastUpdated": "2025-12-12T10:45:00Z",
  "models": {
    "claude-embedded": {
      "modelId": "claude-embedded",
      "provider": "Anthropic",
      "isFree": true,
      "pricing": "FREE (embedded)",
      "totalRuns": 12,
      "successfulRuns": 12,
      "failedRuns": 0,
      "totalExecutionTime": 420,
      "avgExecutionTime": 35,
      "minExecutionTime": 28,
      "maxExecutionTime": 52,
      "totalIssuesFound": 96,
      "avgQualityScore": 92,
      "totalCost": 0,
      "qualityScores": [95, 90, 88, 94, 91],
      "lastUsed": "2025-12-12T10:35:22Z",
      "trend": "stable",
      "history": [
        {
          "timestamp": "2025-12-12T10:35:22Z",
          "session": "review-20251212-103522-a3f2",
          "status": "success",
          "executionTime": 32,
          "issuesFound": 8,
          "qualityScore": 95,
          "cost": 0
        }
      ]
    },
    "x-ai-grok-code-fast-1": {
      "modelId": "x-ai/grok-code-fast-1",
      "provider": "X-ai",
      "isFree": false,
      "pricing": "$0.85/1M",
      "totalRuns": 10,
      "successfulRuns": 9,
      "failedRuns": 1,
      "totalCost": 0.12,
      "trend": "improving"
    },
    "qwen-qwen3-coder-free": {
      "modelId": "qwen/qwen3-coder:free",
      "provider": "Qwen",
      "isFree": true,
      "pricing": "FREE",
      "totalRuns": 5,
      "successfulRuns": 5,
      "failedRuns": 0,
      "totalCost": 0,
      "trend": "stable"
    }
  },
  "sessions": [
    {
      "sessionId": "review-20251212-103522-a3f2",
      "timestamp": "2025-12-12T10:35:22Z",
      "totalModels": 4,
      "successfulModels": 3,
      "failedModels": 1,
      "parallelTime": 120,
      "sequentialTime": 335,
      "speedup": 2.8,
      "totalCost": 0.018,
      "freeModelsUsed": 2
    }
  ],
  "recommendations": {
    "topPaid": ["x-ai/grok-code-fast-1", "google/gemini-3-pro-preview"],
    "topFree": ["qwen/qwen3-coder:free", "mistralai/devstral-2512:free"],
    "bestValue": ["x-ai/grok-code-fast-1"],
    "avoid": [],
    "lastGenerated": "2025-12-12T10:45:00Z"
  }
}
```

**Key Benefits of Persistent Storage:**
- Track model reliability over time (not just one session)
- Identify consistently slow models
- Calculate historical success rates
- Generate data-driven shortlist recommendations

**How to Calculate Quality Score:**

Quality = % of model's issues that appear in unanimous or strong consensus

```
quality_score = (issues_in_unanimous + issues_in_strong) / total_issues * 100

Example:
- Model found 10 issues
- 4 appear in unanimous consensus
- 3 appear in strong consensus
- Quality = (4 + 3) / 10 * 100 = 70%
```

Higher quality means the model finds issues other models agree with.

**How to Calculate Parallel Speedup:**

```
speedup = sum(all_execution_times) / max(execution_time)

Example:
- Claude: 32s
- Grok: 45s
- Gemini: 38s
- GPT-5: 120s

Sequential would take: 32 + 45 + 38 + 120 = 235s
Parallel took: max(32, 45, 38, 120) = 120s
Speedup: 235 / 120 = 1.96x
```

**Performance Statistics Display Format:**

```markdown
## Model Performance Statistics

| Model                     | Time   | Issues | Quality | Status    |
|---------------------------|--------|--------|---------|-----------|
| claude-embedded           | 32s    | 8      | 95%     | ✓         |
| x-ai/grok-code-fast-1     | 45s    | 6      | 85%     | ✓         |
| google/gemini-2.5-flash   | 38s    | 5      | 90%     | ✓         |
| openai/gpt-5.1-codex   | 120s   | 9      | 88%     | ✓ (slow)  |
| deepseek/deepseek-chat    | TIMEOUT| 0      | -       | ✗         |

**Session Summary:**
- Parallel Speedup: 1.96x (235s sequential → 120s parallel)
- Average Time: 59s
- Slowest: gpt-5.1-codex (2.0x avg)

**Recommendations:**
⚠️ gpt-5.1-codex runs 2x slower than average - consider removing
⚠️ deepseek-chat timed out - check API status or remove from shortlist
✓ Top performers: claude-embedded, gemini-2.5-flash (fast + high quality)
```

**Recommendation Logic:**

```
1. Flag SLOW models:
   if (model.executionTime > 2 * avgExecutionTime) {
     flag: "⚠️ Runs 2x+ slower than average"
     suggestion: "Consider removing from shortlist"
   }

2. Flag FAILED/TIMEOUT models:
   if (model.status !== "success") {
     flag: "⚠️ Failed or timed out"
     suggestion: "Check API status or increase timeout"
   }

3. Identify TOP PERFORMERS:
   if (model.qualityScore > 85 && model.executionTime < avgExecutionTime) {
     highlight: "✓ Top performer (fast + high quality)"
   }

4. Suggest SHORTLIST:
   sortedModels = models.sort((a, b) => {
     // Quality/speed ratio: higher quality + lower time = better
     scoreA = a.qualityScore / (a.executionTime / avgExecutionTime)
     scoreB = b.qualityScore / (b.executionTime / avgExecutionTime)
     return scoreB - scoreA
   })
   shortlist = sortedModels.slice(0, 3)
```

**Implementation (writes to ai-docs/llm-performance.json):**

```bash
# Track model performance after each model completes
# Updates historical aggregates and adds to run history
# Parameters: model_id, status, duration, issues, quality_score, cost, is_free
track_model_performance() {
  local model_id="$1"
  local status="$2"
  local duration="$3"
  local issues="${4:-0}"
  local quality_score="${5:-}"
  local cost="${6:-0}"
  local is_free="${7:-false}"

  local perf_file="ai-docs/llm-performance.json"
  local model_key=$(echo "$model_id" | tr '/:' '-')  # Handle colons in free model names

  # Initialize file if doesn't exist
  [[ -f "$perf_file" ]] || echo '{"schemaVersion":"2.0.0","models":{},"sessions":[],"recommendations":{}}' > "$perf_file"

  jq --arg model "$model_key" \
     --arg model_full "$model_id" \
     --arg status "$status" \
     --argjson duration "$duration" \
     --argjson issues "$issues" \
     --arg quality "${quality_score:-null}" \
     --argjson cost "$cost" \
     --argjson is_free "$is_free" \
     --arg now "$(date -u +%Y-%m-%dT%H:%M:%SZ)" \
     --arg session "${SESSION_ID:-unknown}" \
     '
     # Initialize model if not exists
     .models[$model] //= {"modelId":$model_full,"provider":"unknown","isFree":$is_free,
       "totalRuns":0,"successfulRuns":0,"failedRuns":0,
       "totalExecutionTime":0,"avgExecutionTime":0,"minExecutionTime":null,"maxExecutionTime":null,
       "totalIssuesFound":0,"avgQualityScore":null,"qualityScores":[],"totalCost":0,
       "lastUsed":null,"trend":"new","history":[]} |

     # Update aggregates
     .models[$model].totalRuns += 1 |
     .models[$model].successfulRuns += (if $status == "success" then 1 else 0 end) |
     .models[$model].failedRuns += (if $status != "success" then 1 else 0 end) |
     .models[$model].totalExecutionTime += $duration |
     .models[$model].avgExecutionTime = ((.models[$model].totalExecutionTime / .models[$model].totalRuns) | floor) |
     .models[$model].totalIssuesFound += $issues |
     .models[$model].totalCost += $cost |
     .models[$model].isFree = $is_free |
     .models[$model].lastUsed = $now |

     # Update min/max
     .models[$model].minExecutionTime = ([.models[$model].minExecutionTime, $duration] | map(select(. != null)) | min) |
     .models[$model].maxExecutionTime = ([.models[$model].maxExecutionTime, $duration] | max) |

     # Update quality scores and trend (if provided)
     (if $quality != "null" then
       .models[$model].qualityScores += [($quality|tonumber)] |
       .models[$model].avgQualityScore = ((.models[$model].qualityScores|add) / (.models[$model].qualityScores|length) | floor) |
       # Calculate trend (last 3 vs previous 3)
       (if (.models[$model].qualityScores | length) >= 6 then
         ((.models[$model].qualityScores[-3:] | add) / 3) as $recent |
         ((.models[$model].qualityScores[-6:-3] | add) / 3) as $previous |
         .models[$model].trend = (if ($recent - $previous) > 5 then "improving"
           elif ($recent - $previous) < -5 then "degrading"
           else "stable" end)
       else . end)
     else . end) |

     # Add to history (keep last 20)
     .models[$model].history = ([{"timestamp":$now,"session":$session,"status":$status,
       "executionTime":$duration,"issuesFound":$issues,"cost":$cost,
       "qualityScore":(if $quality != "null" then ($quality|tonumber) else null end)}] + .models[$model].history)[:20] |

     .lastUpdated = $now
     ' "$perf_file" > "${perf_file}.tmp" && mv "${perf_file}.tmp" "$perf_file"
}

# Usage examples:
# Paid models
track_model_performance "x-ai/grok-code-fast-1" "success" 45 6 87 0.002 false
track_model_performance "openai/gpt-5.1-codex" "success" 68 7 89 0.015 false

# Free models (cost=0, is_free=true)
track_model_performance "qwen/qwen3-coder:free" "success" 52 5 82 0 true
track_model_performance "mistralai/devstral-2512:free" "success" 48 5 84 0 true

# Embedded Claude (always free)
track_model_performance "claude-embedded" "success" 32 8 95 0 true

# Failed/timeout models
track_model_performance "some-model" "timeout" 120 0 "" 0 false
```

**Record Session Summary:**

```bash
record_session_stats() {
  local total="$1" success="$2" failed="$3"
  local parallel_time="$4" sequential_time="$5" speedup="$6"
  local total_cost="${7:-0}" free_models_used="${8:-0}"

  local perf_file="ai-docs/llm-performance.json"
  [[ -f "$perf_file" ]] || echo '{"schemaVersion":"2.0.0","models":{},"sessions":[],"recommendations":{}}' > "$perf_file"

  jq --arg session "${SESSION_ID:-unknown}" \
     --arg now "$(date -u +%Y-%m-%dT%H:%M:%SZ)" \
     --argjson total "$total" --argjson success "$success" --argjson failed "$failed" \
     --argjson parallel "$parallel_time" --argjson sequential "$sequential_time" --argjson speedup "$speedup" \
     --argjson cost "$total_cost" --argjson free_count "$free_models_used" \
     '.sessions = ([{"sessionId":$session,"timestamp":$now,"totalModels":$total,
       "successfulModels":$success,"failedModels":$failed,"parallelTime":$parallel,
       "sequentialTime":$sequential,"speedup":$speedup,"totalCost":$cost,
       "freeModelsUsed":$free_count}] + .sessions)[:50] | .lastUpdated = $now' \
     "$perf_file" > "${perf_file}.tmp" && mv "${perf_file}.tmp" "$perf_file"
}

# Usage:
# record_session_stats total success failed parallel_time sequential_time speedup total_cost free_count
record_session_stats 5 5 0 68 245 3.6 0.017 2
```

**Get Recommendations from Historical Data:**

```bash
get_model_recommendations() {
  local perf_file="ai-docs/llm-performance.json"
  [[ -f "$perf_file" ]] || { echo "No performance data yet."; return; }

  jq -r '
    (.models | to_entries | map(select(.value.successfulRuns > 0) | .value.avgExecutionTime) | add / length) as $avg |
    {
      "overallAvgTime": ($avg | floor),
      "slowModels": [.models | to_entries[] | select(.value.avgExecutionTime > ($avg * 2)) | .key],
      "unreliableModels": [.models | to_entries[] | select(.value.totalRuns >= 3 and (.value.failedRuns / .value.totalRuns) > 0.3) | .key],
      "topPaidPerformers": [.models | to_entries | map(select(.value.avgQualityScore != null and .value.avgQualityScore > 80 and .value.isFree == false and .value.avgExecutionTime <= $avg)) | sort_by(-.value.avgQualityScore)[:3] | .[].key],
      "topFreePerformers": [.models | to_entries | map(select(.value.avgQualityScore != null and .value.avgQualityScore > 75 and .value.isFree == true)) | sort_by(-.value.avgQualityScore)[:3] | .[].key],
      "bestValue": [.models | to_entries | map(select(.value.avgQualityScore != null and .value.totalCost > 0)) | sort_by(-(.value.avgQualityScore / (.value.totalCost / .value.totalRuns)))[:2] | .[].key],
      "degradingModels": [.models | to_entries[] | select(.value.trend == "degrading") | .key]
    }
  ' "$perf_file"
}

# Display formatted recommendations
display_recommendations() {
  local perf_file="ai-docs/llm-performance.json"
  [[ -f "$perf_file" ]] || { echo "No performance data yet. Run some validations first!"; return; }

  echo "## Model Recommendations (based on historical data)"
  echo ""

  # Top paid performers
  echo "### 💰 Top Paid Models"
  jq -r '.models | to_entries | map(select(.value.isFree == false and .value.avgQualityScore != null)) | sort_by(-.value.avgQualityScore)[:3] | .[] | "- \(.value.modelId): Quality \(.value.avgQualityScore)%, Avg \(.value.avgExecutionTime)s, Cost $\(.value.totalCost | . * 100 | floor / 100)"' "$perf_file"
  echo ""

  # Top free performers
  echo "### 🆓 Top Free Models"
  jq -r '.models | to_entries | map(select(.value.isFree == true and .value.avgQualityScore != null and .key != "claude-embedded")) | sort_by(-.value.avgQualityScore)[:3] | .[] | "- \(.value.modelId): Quality \(.value.avgQualityScore)%, Avg \(.value.avgExecutionTime)s"' "$perf_file"
  echo ""

  # Models to avoid
  echo "### ⚠️ Consider Avoiding"
  jq -r '
    (.models | to_entries | map(select(.value.successfulRuns > 0) | .value.avgExecutionTime) | add / length) as $avg |
    .models | to_entries[] |
    select(
      (.value.avgExecutionTime > ($avg * 2)) or
      (.value.totalRuns >= 3 and (.value.failedRuns / .value.totalRuns) > 0.3) or
      (.value.trend == "degrading")
    ) |
    "- \(.key): " +
    (if .value.avgExecutionTime > ($avg * 2) then "⏱️ Slow (2x+ avg)" else "" end) +
    (if .value.totalRuns >= 3 and (.value.failedRuns / .value.totalRuns) > 0.3 then " ❌ Unreliable (>\(.value.failedRuns)/\(.value.totalRuns) failures)" else "" end) +
    (if .value.trend == "degrading" then " 📉 Quality degrading" else "" end)
  ' "$perf_file"
}
```

---

### Pattern 8: Data-Driven Model Selection (NEW v3.0)

**Purpose:** Use historical performance data to make intelligent model selection recommendations.

**The Problem:**

Users often select models arbitrarily or based on outdated information:
- "I'll use GPT-5 because it's famous"
- "Let me try this new model I heard about"
- "I'll use the same 5 models every time"

**The Solution:**

Use accumulated performance data to recommend:
1. **Top performers** (highest quality scores)
2. **Best value** (quality/cost ratio)
3. **Top free models** (high quality, zero cost)
4. **Models to avoid** (slow, unreliable, or degrading)

**Model Selection Algorithm:**

```
1. Load historical data from ai-docs/llm-performance.json

2. Calculate metrics for each model:
   - Success Rate = successfulRuns / totalRuns × 100
   - Quality Score = avgQualityScore (from consensus analysis)
   - Speed Score = avgExecutionTime relative to overall average
   - Value Score = avgQualityScore / (totalCost / totalRuns)

3. Categorize models:
   TOP PAID: Quality > 80%, Success > 90%, Speed <= avg
   TOP FREE: Quality > 75%, Success > 90%, isFree = true
   BEST VALUE: Highest Quality/Cost ratio among paid models
   AVOID: Speed > 2x avg OR Success < 70% OR trend = "degrading"

4. Present recommendations with context:
   - Show historical metrics
   - Highlight trends (improving/stable/degrading)
   - Flag new models with insufficient data
```

**Interactive Model Selection with Recommendations:**

Instead of just displaying recommendations, use AskUserQuestion with multiSelect to let users interactively choose:

```typescript
// Build options from claudish output + historical data
const paidModels = getTopModelsFromClaudish();  // claudish --top-models
const freeModels = getFreeModelsFromClaudish(); // claudish --free
const history = loadPerformanceHistory();        // ai-docs/llm-performance.json

// Merge and build AskUserQuestion options
AskUserQuestion({
  questions: [{
    question: "Select models for validation (Claude internal always included). Based on 25 sessions across 8 models.",
    header: "Models",
    multiSelect: true,
    options: [
      // Top paid with historical data
      {
        label: "x-ai/grok-code-fast-1 ⚡ (Recommended)",
        description: "$0.85/1M | Quality: 87% | Avg: 42s | Fast + accurate"
      },
      {
        label: "google/gemini-3-pro-preview 🎯",
        description: "$7.00/1M | Quality: 91% | Avg: 55s | High accuracy"
      },
      // Top free models
      {
        label: "qwen/qwen3-coder:free 🆓",
        description: "FREE | Quality: 82% | 262K | Coding-specialized"
      },
      {
        label: "mistralai/devstral-2512:free 🆓",
        description: "FREE | Quality: 84% | 262K | Dev-focused"
      }
      // Note: Models to AVOID are simply not shown in options
      // Note: New models show "(new)" instead of quality score
    ]
  }]
})
```

**Key Principles for Model Selection UI:**

1. **Put recommended models first** with "(Recommended)" suffix
2. **Include historical metrics** in description (Quality %, Avg time)
3. **Mark free models** with 🆓 emoji
4. **Don't show models to avoid** - just exclude them from options
5. **Mark new models** with "(new)" when no historical data
6. **Remember selection** - save to `$SESSION_DIR/selected-models.txt`

**After Selection - Save to Session:**

```bash
# User selected: grok-code-fast-1, qwen3-coder:free
# Save for session persistence
save_session_models "$SESSION_DIR" "${USER_SELECTED_MODELS[@]}"

# Now $SESSION_DIR/selected-models.txt contains:
# claude-embedded
# x-ai/grok-code-fast-1
# qwen/qwen3-coder:free
```

**Warning Display (separate from selection):**

If there are models to avoid, show a brief warning before the selection:

```
⚠️ Models excluded from selection (poor historical performance):
- openai/gpt-5.1-codex: Slow (2.1x avg)
- some-model: 60% success rate
```

**Automatic Shortlist Generation:**

```bash
# Generate optimal shortlist based on criteria
generate_shortlist() {
  local criteria="${1:-balanced}"  # balanced, quality, budget, free-only
  local perf_file="ai-docs/llm-performance.json"

  case "$criteria" in
    "balanced")
      # 1 internal + 1 fast paid + 1 free
      echo "claude-embedded"
      jq -r '.models | to_entries | map(select(.value.isFree == false and .value.avgQualityScore > 80)) | sort_by(.value.avgExecutionTime)[0].key' "$perf_file"
      jq -r '.models | to_entries | map(select(.value.isFree == true and .key != "claude-embedded" and .value.avgQualityScore > 75)) | sort_by(-.value.avgQualityScore)[0].key' "$perf_file"
      ;;
    "quality")
      # Top 3 by quality regardless of cost
      echo "claude-embedded"
      jq -r '.models | to_entries | map(select(.value.avgQualityScore != null and .key != "claude-embedded")) | sort_by(-.value.avgQualityScore)[:2] | .[].key' "$perf_file"
      ;;
    "budget")
      # Internal + 2 cheapest performers
      echo "claude-embedded"
      jq -r '.models | to_entries | map(select(.value.avgQualityScore > 75 and .value.isFree == true)) | sort_by(-.value.avgQualityScore)[:2] | .[].key' "$perf_file"
      ;;
    "free-only")
      # Only free models
      echo "claude-embedded"
      jq -r '.models | to_entries | map(select(.value.isFree == true and .key != "claude-embedded" and .value.avgQualityScore != null)) | sort_by(-.value.avgQualityScore)[:2] | .[].key' "$perf_file"
      ;;
  esac
}

# Usage:
generate_shortlist "balanced"   # For most use cases
generate_shortlist "quality"    # When accuracy is critical
generate_shortlist "budget"     # When cost matters
generate_shortlist "free-only"  # Zero-cost validation
```

**Integration with Model Discovery:**

```
Workflow:
1. Run `claudish --top-models` → Get current paid models
2. Run `claudish --free` → Get current free models
3. Load ai-docs/llm-performance.json → Get historical performance
4. Merge data:
   - New models (no history): Mark as "🆕 New"
   - Known models: Show performance metrics
   - Deprecated models: Filter out (not in claudish output)
5. Generate recommendations
6. Present to user with AskUserQuestion
```

**Why This Matters:**

| Selection Method | Outcome |
|------------------|---------|
| Random/arbitrary | Hit-or-miss, may waste money on slow models |
| Always same models | Miss new better options, stuck with degrading ones |
| Data-driven | Optimal quality/cost/speed balance, continuous improvement |

Over time, the system learns which models work best for YOUR codebase and validation patterns.

---

## Integrating Statistics in Your Plugin

**To add LLM performance tracking to your plugin's commands:**

### Step 1: Reference This Skill
Add to your command's frontmatter:
```yaml
skills: orchestration:multi-model-validation
```

### Step 2: Track Each Model Execution
After each external model completes:
```bash
# Parameters: model_id, status, duration_seconds, issues_found, quality_score
track_model_performance "x-ai/grok-code-fast-1" "success" 45 6 85
```

### Step 3: Record Session Summary
At the end of multi-model execution:
```bash
# Parameters: total, successful, failed, parallel_time, sequential_time, speedup
record_session_stats 4 3 1 120 335 2.8
```

### Step 4: Display Statistics
In your finalization phase, show:
1. This session's model performance table
2. Historical performance (if ai-docs/llm-performance.json exists)
3. Recommendations for slow/unreliable models

### Example Integration (in command.md)

```xml
<phase name="External Review">
  <steps>
    <step>Record start time: PHASE_START=$(date +%s)</step>
    <step>Run external models in parallel (single message, multiple Task calls)</step>
    <step>
      After completion, track each model:
      track_model_performance "{model}" "{status}" "{duration}" "{issues}" "{quality}"
    </step>
    <step>
      Record session:
      record_session_stats $TOTAL $SUCCESS $FAILED $PARALLEL $SEQUENTIAL $SPEEDUP
    </step>
  </steps>
</phase>

<phase name="Finalization">
  <steps>
    <step>
      Display Model Performance Statistics (read from ai-docs/llm-performance.json)
    </step>
    <step>Show recommendations for slow/failing models</step>
  </steps>
</phase>
```

### Plugins Using This Pattern

| Plugin | Command | Usage |
|--------|---------|-------|
| **frontend** | `/review` | Full implementation with historical tracking |
| **agentdev** | `/develop` | Plan review + quality review tracking |

---

## Integration with Other Skills

**multi-model-validation + quality-gates:**

```
Use Case: Cost approval before expensive multi-model review

Step 1: Cost Estimation (multi-model-validation)
  Calculate input/output tokens
  Estimate cost range

Step 2: User Approval Gate (quality-gates)
  Present cost estimate
  Ask user for approval
  If NO: Offer alternatives or abort
  If YES: Proceed with execution

Step 3: Parallel Execution (multi-model-validation)
  Follow 4-Message Pattern
  Launch all models simultaneously
```

**multi-model-validation + error-recovery:**

```
Use Case: Handling external model failures gracefully

Step 1: Parallel Execution (multi-model-validation)
  Launch 5 external models

Step 2: Error Handling (error-recovery)
  Model 1: Success
  Model 2: Timeout after 30s → Skip, continue with others
  Model 3: API 500 error → Retry once, then skip
  Model 4: Success
  Model 5: Success

Step 3: Partial Success Strategy (error-recovery)
  3/5 models succeeded (≥ 2 threshold)
  Proceed with consolidation using 3 reviews
  Notify user: "2 models failed, proceeding with 3 reviews"

Step 4: Consolidation (multi-model-validation)
  Consolidate 3 successful reviews
  Apply consensus analysis
```

**multi-model-validation + todowrite-orchestration:**

```
Use Case: Real-time progress tracking during parallel execution

Step 1: Initialize TodoWrite (todowrite-orchestration)
  Tasks:
    1. Prepare workspace
    2. Launch Claude review
    3. Launch Grok review
    4. Launch Gemini review
    5. Launch GPT-5 review
    6. Consolidate reviews
    7. Present results

Step 2: Update Progress (todowrite-orchestration)
  Mark tasks complete as models finish:
    - Claude completes → Mark task 2 complete
    - Grok completes → Mark task 3 complete
    - Gemini completes → Mark task 4 complete
    - GPT-5 completes → Mark task 5 complete

Step 3: User Sees Real-Time Progress
  "3/4 external models completed, 1 in progress..."
```

---

## Best Practices

**Do:**
- ✅ Use 4-Message Pattern for true parallel execution
- ✅ Provide cost estimates BEFORE execution
- ✅ Ask user approval for costs >$0.01
- ✅ Auto-trigger consolidation when N ≥ 2 reviews complete
- ✅ Use blocking (synchronous) claudish execution
- ✅ Write full output to files, return brief summaries
- ✅ Prioritize by consensus level (unanimous → strong → majority → divergent)
- ✅ Show model agreement matrix
- ✅ Handle partial success gracefully (some models fail)
- ✅ **Track execution time per model** (NEW v2.0)
- ✅ **Calculate and display quality scores** (NEW v2.0)
- ✅ **Show performance statistics table at end of session** (NEW v2.0)
- ✅ **Generate recommendations for slow/failing models** (NEW v2.0)

**Don't:**
- ❌ Mix tool types in Message 2 (breaks parallelism)
- ❌ Use background claudish execution (returns before completion)
- ❌ Wait for user to request consolidation (auto-trigger instead)
- ❌ Consolidate with < 2 successful reviews (no meaningful consensus)
- ❌ Inline full reviews in consolidation prompt (use file paths)
- ❌ Return full 500-line reviews to orchestrator (use brief summaries)
- ❌ Skip cost approval gate for expensive operations
- ❌ **Skip statistics display** (users need data to optimize model selection)
- ❌ **Keep slow models in shortlist** (flag models 2x+ slower than average)

**Performance:**
- Parallel execution: 3-5x faster than sequential
- Message 2 speedup: 15 min → 5 min with 5 models
- Context efficiency: Brief summaries save 50-80% context
- **Statistics overhead: <1 second** (jq operations are fast)

---

## Examples

### Example 1: Dynamic Model Discovery + Review

**Scenario:** User requests "Let's run external models to validate our solution"

**Execution:**

```
Message 1: Session Setup + Model Discovery
  # Create unique session
  Bash: SESSION_ID="review-$(date +%Y%m%d-%H%M%S)-$(head -c 4 /dev/urandom | xxd -p)"
  Bash: SESSION_DIR="/tmp/${SESSION_ID}" && mkdir -p "$SESSION_DIR"
  Output: Session: review-20251212-143052-a3f2

  # Discover available models
  Bash: claudish --top-models
  Output:
    google/gemini-3-pro-preview    Google     $7.00/1M   1048K   🔧 🧠 👁️
    openai/gpt-5.1-codex           Openai     $5.63/1M   400K    🔧 🧠 👁️
    x-ai/grok-code-fast-1          X-ai       $0.85/1M   256K    🔧 🧠
    minimax/minimax-m2             Minimax    $0.64/1M   262K    🔧 🧠

  Bash: claudish --free
  Output:
    qwen/qwen3-coder:free          Qwen       FREE       262K    ✓ · ·
    mistralai/devstral-2512:free   Mistralai  FREE       262K    ✓ · ·
    qwen/qwen3-235b-a22b:free      Qwen       FREE       131K    ✓ ✓ ·

  # Load historical performance
  Bash: cat ai-docs/llm-performance.json | jq '.models | keys'
  Output: ["claude-embedded", "x-ai-grok-code-fast-1", "qwen-qwen3-coder-free"]

  # Prepare code context
  Bash: git diff > "$SESSION_DIR/code-context.md"

Message 2: Model Selection (AskUserQuestion with multiSelect)
  # Use AskUserQuestion tool with multiSelect: true
  AskUserQuestion({
    questions: [{
      question: "Which external models should validate your code? (Internal Claude always included)",
      header: "Models",
      multiSelect: true,
      options: [
        { label: "x-ai/grok-code-fast-1 ⚡", description: "$0.85/1M | Quality: 87% | Avg: 42s" },
        { label: "google/gemini-3-pro-preview", description: "$7.00/1M | New model, no history" },
        { label: "qwen/qwen3-coder:free 🆓", description: "FREE | Quality: 82% | Coding-specialized" },
        { label: "mistralai/devstral-2512:free 🆓", description: "FREE | Dev-focused, new model" }
      ]
    }]
  })

  # User selects via interactive UI:
  # ☑ x-ai/grok-code-fast-1
  # ☐ google/gemini-3-pro-preview
  # ☑ qwen/qwen3-coder:free
  # ☑ mistralai/devstral-2512:free

  # Save selection to session for later use
  save_session_models "$SESSION_DIR" "x-ai/grok-code-fast-1" "qwen/qwen3-coder:free" "mistralai/devstral-2512:free"

  # Session now has:
  # $SESSION_DIR/selected-models.txt containing:
  # claude-embedded (always)
  # x-ai/grok-code-fast-1
  # qwen/qwen3-coder:free
  # mistralai/devstral-2512:free

Message 3: Parallel Execution (Task only - single message)
  Task: senior-code-reviewer
    Prompt: "Review $SESSION_DIR/code-context.md.
             Write to $SESSION_DIR/claude-review.md"
  ---
  Task: codex-code-reviewer PROXY_MODE: x-ai/grok-code-fast-1
    Prompt: "Review $SESSION_DIR/code-context.md.
             Write to $SESSION_DIR/grok-review.md"
  ---
  Task: codex-code-reviewer PROXY_MODE: qwen/qwen3-coder:free
    Prompt: "Review $SESSION_DIR/code-context.md.
             Write to $SESSION_DIR/qwen-coder-review.md"
  ---
  Task: codex-code-reviewer PROXY_MODE: mistralai/devstral-2512:free
    Prompt: "Review $SESSION_DIR/code-context.md.
             Write to $SESSION_DIR/devstral-review.md"

  All 4 execute simultaneously!

Message 4: Auto-Consolidation + Statistics Update
  # Consolidate
  Task: senior-code-reviewer
    Prompt: "Consolidate 4 reviews from $SESSION_DIR/*.md"

  # Track performance
  track_model_performance "claude-embedded" "success" 32 8 95 0 true
  track_model_performance "x-ai/grok-code-fast-1" "success" 45 6 87 0.002 false
  track_model_performance "qwen/qwen3-coder:free" "success" 52 5 82 0 true
  track_model_performance "mistralai/devstral-2512:free" "success" 48 5 84 0 true

  record_session_stats 4 4 0 52 177 3.4 0.002 3

Message 5: Present Results
  "Multi-model review complete! Session: review-20251212-143052-a3f2

   Top Issues (Consensus):
   1. [UNANIMOUS] SQL injection in search endpoint
   2. [STRONG] Missing input validation (3/4 models)
   3. [MAJORITY] Weak password hashing (2/4 models)

   Model Performance (this session):
   | Model                        | Time | Issues | Quality | Cost   |
   |------------------------------|------|--------|---------|--------|
   | claude-embedded              | 32s  | 8      | 95%     | FREE   |
   | x-ai/grok-code-fast-1        | 45s  | 6      | 87%     | $0.002 |
   | qwen/qwen3-coder:free        | 52s  | 5      | 82%     | FREE   |
   | mistralai/devstral-2512:free | 48s  | 5      | 84%     | FREE   |

   Session Stats:
   - Parallel Speedup: 3.4x (177s → 52s)
   - Total Cost: $0.002 (3 free models used!)

   Performance logged to ai-docs/llm-performance.json
   See $SESSION_DIR/consolidated-review.md for details."
```

**Result:** Dynamic model discovery, user selection, 3 free models, data-driven optimization

---

### Example 2: Partial Success with Error Recovery

**Scenario:** 4 models selected, 2 fail

**Execution:**

```
Message 1: Preparation
  (same as Example 1)

Message 2: Parallel Execution
  Task: senior-code-reviewer (embedded)
  Task: PROXY_MODE grok (external)
  Task: PROXY_MODE gemini (external)
  Task: PROXY_MODE gpt-5-codex (external)

Message 3: Error Recovery (error-recovery skill)
  results = await Promise.allSettled([...]);

  Results:
    - Claude: Success ✓
    - Grok: Timeout after 30s ✗
    - Gemini: API 500 error ✗
    - GPT-5: Success ✓

  successful.length = 2 (Claude + GPT-5)
  2 ≥ 2 ✓ (threshold met, can proceed)

  Notify user:
    "2/4 models succeeded (Grok timeout, Gemini error).
     Proceeding with consolidation using 2 reviews."

Message 4: Auto-Consolidation
  Task: senior-code-reviewer
    Prompt: "Consolidate 2 reviews from:
             - ai-docs/reviews/claude-review.md
             - ai-docs/reviews/gpt5-review.md

             Note: Only 2 models (Grok and Gemini failed)."

Message 5: Present Results
  "Multi-model review complete (2/4 models succeeded).

   Top Issues (2-model consensus):
   1. [UNANIMOUS] SQL injection (both flagged)
   2. [DIVERGENT] Input validation (Claude only)
   3. [DIVERGENT] Rate limiting (GPT-5 only)

   Note: Grok and Gemini failed. Limited consensus data.
   See ai-docs/consolidated-review.md for details."
```

**Result:** Graceful degradation, useful results despite failures

---

## Troubleshooting

**Problem: Models executing sequentially instead of parallel**

Cause: Mixed tool types in Message 2

Solution: Use ONLY Task calls in Message 2

```
❌ Wrong:
  Message 2:
    TodoWrite({...})
    Task({...})
    Task({...})

✅ Correct:
  Message 1: TodoWrite({...}) (separate message)
  Message 2: Task({...}); Task({...}) (only Task)
```

---

**Problem: Agent returns before external model completes**

Cause: Background claudish execution

Solution: Use synchronous (blocking) execution

```
❌ Wrong:
  claudish --model grok ... &

✅ Correct:
  RESULT=$(claudish --model grok ...)
```

---

**Problem: Consolidation never triggers**

Cause: Waiting for user to request it

Solution: Auto-trigger when N ≥ 2 reviews complete

```
❌ Wrong:
  if (results.length >= 2) {
    notifyUser("Ready to consolidate. Proceed?");
    // Waits for user...
  }

✅ Correct:
  if (results.length >= 2) {
    // Auto-trigger, don't wait
    await consolidate();
  }
```

---

**Problem: Costs higher than estimated**

Cause: Underestimated output tokens

Solution: Use range-based estimates, bias toward high end

```
✅ Better Estimation:
  Output: 3,000 - 5,000 tokens (range, not single number)
  Cost: $0.005 - $0.010 (gives user realistic expectation)
```

---

## ⚠️ MANDATORY: Statistics Collection Checklist

**Statistics are NOT optional.** The multi-model validation is INCOMPLETE without performance tracking.

### Why This Matters

Real-world feedback showed that agents often:
- ❌ Forget to instrument timing
- ❌ Skip statistics because Task tool doesn't return timing
- ❌ Get caught up in execution and forget the statistics phase
- ❌ Present results without performance data

**This checklist prevents those failures.**

### Complete Tracking Protocol

For the complete tracking protocol including:
- Pre-launch checklist (8 required items)
- Tracking table templates (simple, detailed, session-based)
- Failure documentation format
- Consensus analysis requirements
- Results presentation template

**See:** `orchestration:model-tracking-protocol`

The tracking protocol skill provides copy-paste templates that make compliance easy and unforgettable.

### Pre-Flight Checklist (Before Launching Models)

```bash
# 1. Record session start time (REQUIRED)
SESSION_START=$(date +%s)
echo "Session started at: $SESSION_START"

# 2. Create timing tracker file in session directory
echo "{}" > "$SESSION_DIR/timing.json"

# 3. Initialize per-model start times array
declare -A MODEL_START_TIMES
```

### Per-Model Timing (During Execution)

**CRITICAL:** Record start time BEFORE launching each model:

```bash
# Before launching each Task
MODEL_START_TIMES["claude-embedded"]=$(date +%s)
MODEL_START_TIMES["x-ai/grok-code-fast-1"]=$(date +%s)
MODEL_START_TIMES["qwen/qwen3-coder:free"]=$(date +%s)

# After each TaskOutput returns, calculate duration
model_completed() {
  local model="$1"
  local status="$2"
  local issues="${3:-0}"
  local quality="${4:-}"

  local end_time=$(date +%s)
  local start_time="${MODEL_START_TIMES[$model]}"
  local duration=$((end_time - start_time))

  echo "Model $model completed in ${duration}s"

  # Track immediately (don't wait until end)
  track_model_performance "$model" "$status" "$duration" "$issues" "$quality"
}

# Call when each model completes
model_completed "claude-embedded" "success" 8 95
model_completed "x-ai/grok-code-fast-1" "success" 6 87
```

### Post-Consolidation Checklist (MANDATORY)

Before presenting results to user, you **MUST** complete ALL of these:

```
□ 1. Calculate duration for EACH model
      DURATION=$((END_TIME - START_TIME))

□ 2. Call track_model_performance() for EACH model
      track_model_performance "model-id" "status" duration issues quality cost is_free

□ 3. Calculate parallel vs sequential times
      PARALLEL_TIME=$(max of all durations)
      SEQUENTIAL_TIME=$(sum of all durations)
      SPEEDUP=$(echo "scale=1; $SEQUENTIAL_TIME / $PARALLEL_TIME" | bc)

□ 4. Call record_session_stats()
      record_session_stats $TOTAL $SUCCESS $FAILED $PARALLEL_TIME $SEQUENTIAL_TIME $SPEEDUP $COST $FREE_COUNT

□ 5. Verify ai-docs/llm-performance.json was updated
      [ -f "ai-docs/llm-performance.json" ] && echo "✓ Stats saved"

□ 6. Display performance table (see template below)
```

**FAILURE TO COMPLETE ALL 6 STEPS = INCOMPLETE REVIEW**

### Complete Timing Example

```bash
#!/bin/bash
# Full timing instrumentation example

# === PRE-FLIGHT ===
SESSION_START=$(date +%s)
declare -A MODEL_START_TIMES
declare -A MODEL_END_TIMES
declare -A MODEL_DURATIONS

# === LAUNCH PHASE ===
# Record start times BEFORE launching Tasks
MODEL_START_TIMES["claude-embedded"]=$SESSION_START
MODEL_START_TIMES["x-ai/grok-code-fast-1"]=$SESSION_START
MODEL_START_TIMES["qwen/qwen3-coder:free"]=$SESSION_START

# Launch all Tasks in parallel (Message 2)
# ... Task calls here ...

# === COMPLETION PHASE ===
# After TaskOutput returns for each model
record_completion() {
  local model="$1"
  MODEL_END_TIMES["$model"]=$(date +%s)
  MODEL_DURATIONS["$model"]=$((MODEL_END_TIMES["$model"] - MODEL_START_TIMES["$model"]))
}

# Call as each completes
record_completion "claude-embedded"
record_completion "x-ai/grok-code-fast-1"
record_completion "qwen/qwen3-coder:free"

# === STATISTICS PHASE ===
# Calculate totals
PARALLEL_TIME=0
SEQUENTIAL_TIME=0
for model in "${!MODEL_DURATIONS[@]}"; do
  duration="${MODEL_DURATIONS[$model]}"
  SEQUENTIAL_TIME=$((SEQUENTIAL_TIME + duration))
  if [ "$duration" -gt "$PARALLEL_TIME" ]; then
    PARALLEL_TIME=$duration
  fi
done
SPEEDUP=$(echo "scale=1; $SEQUENTIAL_TIME / $PARALLEL_TIME" | bc)

# Track each model
track_model_performance "claude-embedded" "success" "${MODEL_DURATIONS[claude-embedded]}" 8 95 0 true
track_model_performance "x-ai/grok-code-fast-1" "success" "${MODEL_DURATIONS[x-ai/grok-code-fast-1]}" 6 87 0.002 false
track_model_performance "qwen/qwen3-coder:free" "success" "${MODEL_DURATIONS[qwen/qwen3-coder:free]}" 5 82 0 true

# Record session
record_session_stats 3 3 0 $PARALLEL_TIME $SEQUENTIAL_TIME $SPEEDUP 0.002 2

echo "Statistics collection complete!"
```

### Required Output Template

Your final message to the user **MUST** include this table:

```markdown
## Model Performance (This Session)

| Model                     | Time  | Issues | Quality | Cost   | Status |
|---------------------------|-------|--------|---------|--------|--------|
| claude-embedded           | 32s   | 8      | 95%     | FREE   | ✅     |
| x-ai/grok-code-fast-1     | 45s   | 6      | 87%     | $0.002 | ✅     |
| qwen/qwen3-coder:free     | 52s   | 5      | 82%     | FREE   | ✅     |

## Session Statistics

- **Parallel Time:** 52s (slowest model)
- **Sequential Time:** 129s (sum of all)
- **Speedup:** 2.5x
- **Total Cost:** $0.002
- **Free Models Used:** 2/3

✓ Performance logged to `ai-docs/llm-performance.json`
```

### Verification Before Presenting

Run this check before your final message:

```bash
verify_statistics_complete() {
  local errors=0

  # Check file exists
  if [ ! -f "ai-docs/llm-performance.json" ]; then
    echo "ERROR: ai-docs/llm-performance.json not found"
    errors=$((errors + 1))
  fi

  # Check session was recorded
  if ! jq -e '.sessions[0]' ai-docs/llm-performance.json >/dev/null 2>&1; then
    echo "ERROR: No session recorded"
    errors=$((errors + 1))
  fi

  # Check models were tracked
  local model_count=$(jq '.models | length' ai-docs/llm-performance.json)
  if [ "$model_count" -eq 0 ]; then
    echo "ERROR: No models tracked"
    errors=$((errors + 1))
  fi

  if [ "$errors" -gt 0 ]; then
    echo "STATISTICS INCOMPLETE - $errors errors found"
    return 1
  fi

  echo "✓ Statistics verification passed"
  return 0
}
```

### Common Mistakes and Fixes

| Mistake | Fix |
|---------|-----|
| "I'll track timing later" | Record start time BEFORE launching |
| "Task tool doesn't return timing" | Use bash timestamps around Task calls |
| "Too complex with parallel agents" | Use associative arrays for per-model times |
| "Forgot to call track_model_performance" | Add to checklist, verify file updated |
| "Presented results without table" | Use required output template |

---

## Summary

Multi-model validation achieves 3-5x speedup and consensus-based prioritization through:

- **Pattern 0: Session Setup** (NEW v3.0) - Unique session directories, dynamic model discovery
- **Pattern 1: 4-Message Pattern** - True parallel execution
- **Pattern 2: Parallel Architecture** - Single message, multiple Task calls
- **Pattern 3: Proxy Mode** - Blocking execution via Claudish
- **Pattern 4: Cost Transparency** - Estimate before, report after
- **Pattern 5: Auto-Consolidation** - Triggered when N ≥ 2 complete
- **Pattern 6: Consensus Analysis** - unanimous → strong → majority → divergent
- **Pattern 7: Statistics Collection** - Track speed, cost, quality per model
- **Pattern 8: Data-Driven Selection** (NEW v3.0) - Intelligent model recommendations

Master this skill and you can validate any implementation with multiple AI perspectives in minutes, while continuously improving your model shortlist based on actual performance data.

**Version 3.1.0 Additions:**
- **MANDATORY Statistics Collection Checklist** - Prevents incomplete reviews
- **SubagentStop Hook** - Automatically reminds when statistics weren't collected
- **Pre-Flight Checklist** - Record SESSION_START, initialize timing arrays
- **Per-Model Timing Examples** - Bash associative arrays for tracking durations
- **Required Output Template** - Standardized performance table format
- **Verification Script** - `verify_statistics_complete()` function
- **Common Mistakes Table** - Quick reference for debugging

**Version 3.0 Additions:**
- **Pattern 0: Session Setup and Model Discovery**
  - Unique session directories (`/tmp/review-{timestamp}-{hash}`)
  - Dynamic model discovery via `claudish --top-models` and `claudish --free`
  - Always include internal reviewer (safety net)
  - Recommended free models: qwen3-coder, devstral-2512, qwen3-235b
- **Pattern 8: Data-Driven Model Selection**
  - Historical performance tracking in `ai-docs/llm-performance.json`
  - Per-model metrics: speed, cost, quality, success rate, trend
  - Automatic shortlist generation (balanced, quality, budget, free-only)
  - Model recommendations with context
- **Enhanced Statistics**
  - Cost tracking per model and per session
  - Free vs paid model tracking
  - Trend detection (improving/stable/degrading)
  - Top free performers category

**Version 2.0 Additions:**
- Pattern 7: Statistics Collection and Analysis
- Per-model execution time tracking
- Quality score calculation (issues in consensus %)
- Session summary statistics (speedup, avg time, success rate)
- Recommendations for slow/failing models

---

**Extracted From:**
- `/review` command (complete multi-model review orchestration)
- `CLAUDE.md` Parallel Multi-Model Execution Protocol
- Claudish CLI (https://github.com/MadAppGang/claudish) proxy mode patterns

Install

Requires askill CLI v1.0+

Metadata

LicenseUnknown
Version-
Updated1w ago
PublisherMadAppGang

Tags

apici-cdcvdatabasedockergithubgithub-actionsjavascriptkubernetesllmmlmongodbobservabilityopenaipostgrespromptingreactrustsecuritytestingtypescript