Write Metal/MPS kernels for PyTorch operators. Use when adding MPS device support to operators, implementing Metal shaders, or porting CUDA kernels to Apple Silicon. Covers native_functions.yaml dispatch, host-side operators, and Metal kernel implementation.
metal-kernel follows the SKILL.md standard. Use the install command to add it to your agent stack.
---
name: metal-kernel
description: Write Metal/MPS kernels for PyTorch operators. Use when adding MPS device support to operators, implementing Metal shaders, or porting CUDA kernels to Apple Silicon. Covers native_functions.yaml dispatch, host-side operators, and Metal kernel implementation.
---
# Metal Kernel Writing Guide
This skill guides you through implementing Metal kernels for PyTorch operators on Apple Silicon.
**Important:** The goal of this skill is to use native Metal capabilities via the `c10/metal/` infrastructure, NOT MPSGraph. Native Metal kernels provide better control, performance, and maintainability.
## Overview
There are two workflows covered by this skill:
1. **Adding new MPS support** - Implementing a new operator from scratch
2. **Migrating from MPSGraph** - Converting existing MPSGraph-based operators to native Metal
Both workflows involve:
1. **Update dispatch** in `aten/src/ATen/native/native_functions.yaml`
2. **Write Metal kernel** in `aten/src/ATen/native/mps/kernels/`
3. **Implement host-side stub** in `aten/src/ATen/native/mps/operations/`
## Step 1: Update native_functions.yaml
**Location:** `aten/src/ATen/native/native_functions.yaml`
### For New Operators
Find the operator entry and add MPS dispatch:
```yaml
# Simple MPS-specific implementation
- func: my_op(Tensor self) -> Tensor
dispatch:
CPU: my_op_cpu
CUDA: my_op_cuda
MPS: my_op_mps
# Shared implementation across devices (preferred for structured kernels)
- func: my_op.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
dispatch:
CPU, CUDA, MPS: my_op_out
# Structured kernel (preferred for new ops)
- func: my_op.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
structured: True
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA, MPS: my_op_out
```
### For Migrating from MPSGraph
When migrating an existing operator from MPSGraph to native Metal, **consolidate the dispatch entry**:
```yaml
# BEFORE (MPSGraph-based, separate dispatch)
- func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
structured: True
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA: atan2_out
MPS: atan2_out_mps # Separate MPS implementation
# AFTER (native Metal, shared dispatch via stub)
- func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
structured: True
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA, MPS: atan2_out # MPS now uses the same stub mechanism
```
**Key change:** Replace `MPS: my_op_out_mps` with adding `MPS` to the shared dispatch line (e.g., `CPU, CUDA, MPS: my_op_out`).
**Dispatch naming conventions:**
- `MPS: function_name_mps` - MPS-specific implementation (old MPSGraph pattern)
- `CPU, CUDA, MPS: function_name` - Shared stub implementation (native Metal pattern)
## Step 2: Implement Metal Kernel
**Location:** `aten/src/ATen/native/mps/kernels/`
### Unary Kernel Pattern
```metal
// MyKernel.metal
#include <c10/metal/indexing.h>
#include <c10/metal/utils.h>
#include <metal_stdlib>
using namespace metal;
using namespace c10::metal;
// Define operation functor
struct my_op_functor {
template <typename T>
inline T operator()(const T x) {
return /* your operation */;
}
};
// Register for supported types
REGISTER_UNARY_OP(my_op, float, float);
REGISTER_UNARY_OP(my_op, half, half);
REGISTER_UNARY_OP(my_op, bfloat, bfloat);
```
### Binary Kernel Pattern
```metal
struct my_binary_functor {
template <typename T>
inline T operator()(const T a, const T b) {
return /* your operation */;
}
};
REGISTER_BINARY_OP(my_binary, float, float);
REGISTER_BINARY_OP(my_binary, half, half);
```
### Binary Kernel Type Registration Macros
For binary operations, use the convenience macros defined in `BinaryKernel.metal`:
```metal
// Floating-point types only (float, half, bfloat)
REGISTER_FLOAT_BINARY_OP(my_op);
// Integral types with float output (for math ops like atan2, copysign)
// Registers: long->float, int->float, short->float, uchar->float, char->float, bool->float
REGISTER_INT2FLOAT_BINARY_OP(my_op);
// Integral types with same-type output (for bitwise/logical ops)
// Registers: long, int, short, uchar, char, bool
REGISTER_INTEGER_BINARY_OP(my_op);
// Floating-point with opmath precision (for ops needing higher precision)
REGISTER_OPMATH_FLOAT_BINARY_OP(my_op);
```
**Common patterns:**
- Math functions (atan2, copysign, logaddexp): Use both `REGISTER_FLOAT_BINARY_OP` and `REGISTER_INT2FLOAT_BINARY_OP`
- Comparison/logical ops (maximum, minimum): Use both `REGISTER_FLOAT_BINARY_OP` and `REGISTER_INTEGER_BINARY_OP`
- Arithmetic ops (add, sub, mul): Use both `REGISTER_FLOAT_BINARY_OP` and `REGISTER_INTEGER_BINARY_OP`
**Example for atan2 (supports both float and int inputs):**
```metal
struct atan2_functor {
template <typename T, enable_if_t<is_floating_point_v<T>, bool> = true>
inline T operator()(const T a, const T b) {
return static_cast<T>(precise::atan2(float(a), float(b)));
}
template <typename T, enable_if_t<is_integral_v<T>, bool> = true>
inline float operator()(const T a, const T b) {
return precise::atan2(float(a), float(b));
}
};
REGISTER_FLOAT_BINARY_OP(atan2);
REGISTER_INT2FLOAT_BINARY_OP(atan2);
```
### With Scalar Parameter
```metal
struct my_alpha_functor {
template <typename T>
inline T operator()(const T a, const T b, const T alpha) {
return a + c10::metal::mul(alpha, b);
}
};
REGISTER_UNARY_ALPHA_OP(my_alpha, float, float, float);
REGISTER_UNARY_ALPHA_OP(my_alpha, half, half, half);
```
### Type-Specialized Functor
```metal
struct special_functor {
// Floating point types
template <typename T, enable_if_t<is_scalar_floating_point_v<T>, bool> = true>
inline T operator()(const T x) {
return precise::exp(x); // Use precise math
}
// Integral types
template <typename T, enable_if_t<is_scalar_integral_v<T>, bool> = true>
inline float operator()(const T x) {
return precise::exp(float(x));
}
// Complex types (float2 for cfloat, half2 for chalf)
template <typename T, enable_if_t<is_complex_v<T>, bool> = true>
inline T operator()(const T x) {
// x.x = real, x.y = imaginary
return T(/* real */, /* imag */);
}
};
```
**Note on complex types:** Complex numbers in Metal are represented as vector types:
- `c10::complex<float>` maps to `float2` (x = real, y = imaginary)
- `c10::complex<half>` maps to `half2`
Use `is_complex_v<T>` to specialize for complex types in functors.
### Available c10/metal Utilities
**utils.h:**
- `opmath_t<T>` - Operation math type (half->float)
- `accum_t<T>` - Accumulation type for reductions
- `max()`, `min()` with NaN propagation
**special_math.h:**
- `precise::exp()`, `precise::log()`, `precise::sqrt()`
- `precise::sin()`, `precise::cos()`, `precise::tan()`
- `erf()`, `erfc()`, `erfinv()`
**indexing.h:**
- `REGISTER_UNARY_OP(name, in_type, out_type)`
- `REGISTER_BINARY_OP(name, in_type, out_type)`
- `REGISTER_UNARY_ALPHA_OP(name, in_type, alpha_type, out_type)`
## Step 3: Implement Host-Side Stub
**Location:** `aten/src/ATen/native/mps/operations/`
Choose or create an appropriate file based on operation type:
- `UnaryKernel.mm` - Single input operations via stub dispatch
- `BinaryKernel.mm` - Two input operations via stub dispatch
- `UnaryOps.mm` / `BinaryOps.mm` - Legacy MPSGraph implementations (for reference)
- `ReduceOps.mm` - Reductions (sum, mean, max, etc.)
- Create new file for distinct operation categories
### Stub Registration Pattern (Preferred for Native Metal)
For structured kernels that use the TensorIterator pattern:
```objc
// In BinaryKernel.mm (or appropriate file)
static void my_op_mps_kernel(TensorIteratorBase& iter) {
lib.exec_binary_kernel(iter, "my_op"); // "my_op" matches the functor name in .metal
}
// Register the MPS stub - this connects to the dispatch system
REGISTER_DISPATCH(my_op_stub, &my_op_mps_kernel)
```
**For unary operations:**
```objc
static void my_unary_mps_kernel(TensorIteratorBase& iter) {
lib.exec_unary_kernel(iter, "my_unary");
}
REGISTER_DISPATCH(my_unary_stub, &my_unary_mps_kernel)
```
### Migration: Removing Old MPSGraph Implementation
When migrating from MPSGraph, also remove the old implementation:
1. **Remove from BinaryOps.mm (or UnaryOps.mm):**
- Delete the `TORCH_IMPL_FUNC(my_op_out_mps)` implementation
- Remove the corresponding `#include <ATen/ops/my_op_native.h>` header
2. **Add to BinaryKernel.mm (or UnaryKernel.mm):**
- Add the static kernel function
- Add the `REGISTER_DISPATCH` call
## Step 4: Compile
After making changes, compile to verify everything builds correctly:
```bash
cd build && ninja torch_cpu
```
## Testing
Basic operator support is already tested by `test_output_match` in `test/test_mps.py`. After implementing an operator, enable testing by removing expected failures:
### 1. Remove from common_mps.py
**Location:** `torch/testing/_internal/common_mps.py`
Find and remove the operator from skip/xfail lists:
```python
# Remove entries like:
MPS_XFAILLIST = {
"my_op": ..., # Remove this line
}
MPS_SKIPLIST = {
"my_op": ..., # Remove this line
}
```
### 2. Remove from OpInfo decorators
**Location:** `torch/testing/_internal/common_methods_invocations.py` (or related files)
Remove MPS-specific decorators from the OpInfo:
```python
OpInfo(
"my_op",
# Remove decorators like:
# decorators=[skipMPS, expectedFailureMPS("reason")],
...
)
```
### 3. Run tests to verify
```bash
# Run the specific operator test
python test/test_mps.py -k test_output_match_my_op
# Or run full MPS test suite
python test/test_mps.py
```
## Checklist
- [ ] Added MPS dispatch to `native_functions.yaml`
- [ ] Implemented Metal kernel in `kernels/`
- [ ] Implemented host-side operator in `operations/`
- [ ] Handles empty tensors
- [ ] Handles non-contiguous tensors
- [ ] Supports required dtypes (float32, float16, bfloat16, and often complex types via float2/half2)
- [ ] Removed expected failures from `torch/testing/_internal/common_mps.py`
- [ ] Removed skip/xfail decorators from OpInfo (if applicable)