Skillshugging-face-jobs
H

hugging-face-jobs

This skill should be used when users want to run any workload on Hugging Face Jobs infrastructure. Covers UV scripts, Docker-based jobs, hardware selection, cost estimation, authentication with tokens, secrets management, timeout configuration, and result persistence. Designed for general-purpose compute workloads including data processing, inference, experiments, batch jobs, and any Python-based tasks. Should be invoked for tasks involving cloud compute, GPU workloads, or when users mention running jobs on Hugging Face infrastructure without local setup.

huggingface
1.1k stars
21.4k downloads
Updated 2w ago

Readme

hugging-face-jobs follows the SKILL.md standard. Use the install command to add it to your agent stack.

---
name: hugging-face-jobs
description: This skill should be used when users want to run any workload on Hugging Face Jobs infrastructure. Covers UV scripts, Docker-based jobs, hardware selection, cost estimation, authentication with tokens, secrets management, timeout configuration, and result persistence. Designed for general-purpose compute workloads including data processing, inference, experiments, batch jobs, and any Python-based tasks. Should be invoked for tasks involving cloud compute, GPU workloads, or when users mention running jobs on Hugging Face infrastructure without local setup.
license: Complete terms in LICENSE.txt
---

# Running Workloads on Hugging Face Jobs

## Overview

Run any workload on fully managed Hugging Face infrastructure. No local setup required—jobs run on cloud CPUs, GPUs, or TPUs and can persist results to the Hugging Face Hub.

**Common use cases:**
- **Data Processing** - Transform, filter, or analyze large datasets
- **Batch Inference** - Run inference on thousands of samples
- **Experiments & Benchmarks** - Reproducible ML experiments
- **Model Training** - Fine-tune models (see `model-trainer` skill for TRL-specific training)
- **Synthetic Data Generation** - Generate datasets using LLMs
- **Development & Testing** - Test code without local GPU setup
- **Scheduled Jobs** - Automate recurring tasks

**For model training specifically:** See the `model-trainer` skill for TRL-based training workflows.

## When to Use This Skill

Use this skill when users want to:
- Run Python workloads on cloud infrastructure
- Execute jobs without local GPU/TPU setup
- Process data at scale
- Run batch inference or experiments
- Schedule recurring tasks
- Use GPUs/TPUs for any workload
- Persist results to the Hugging Face Hub

## Key Directives

When assisting with jobs:

1. **ALWAYS use `hf_jobs()` MCP tool** - Submit jobs using `hf_jobs("uv", {...})` or `hf_jobs("run", {...})`. The `script` parameter accepts Python code directly. Do NOT save to local files unless the user explicitly requests it. Pass the script content as a string to `hf_jobs()`.

2. **Always handle authentication** - Jobs that interact with the Hub require `HF_TOKEN` via secrets. See Token Usage section below.

3. **Provide job details after submission** - After submitting, provide job ID, monitoring URL, estimated time, and note that the user can request status checks later.

4. **Set appropriate timeouts** - Default 30min may be insufficient for long-running tasks.

## Prerequisites Checklist

Before starting any job, verify:

### ✅ **Account & Authentication**
- Hugging Face Account with [Pro](https://hf.co/pro), [Team](https://hf.co/enterprise), or [Enterprise](https://hf.co/enterprise) plan (Jobs require paid plan)
- Authenticated login: Check with `hf_whoami()`
- **HF_TOKEN for Hub Access** ⚠️ CRITICAL - Required for any Hub operations (push models/datasets, download private repos, etc.)
- Token must have appropriate permissions (read for downloads, write for uploads)

### ✅ **Token Usage** (See Token Usage section for details)

**When tokens are required:**
- Pushing models/datasets to Hub
- Accessing private repositories
- Using Hub APIs in scripts
- Any authenticated Hub operations

**How to provide tokens:**
```python
{
    "secrets": {"HF_TOKEN": "$HF_TOKEN"}  # Recommended: automatic token
}
```

**⚠️ CRITICAL:** The `$HF_TOKEN` placeholder is automatically replaced with your logged-in token. Never hardcode tokens in scripts.

## Token Usage Guide

### Understanding Tokens

**What are HF Tokens?**
- Authentication credentials for Hugging Face Hub
- Required for authenticated operations (push, private repos, API access)
- Stored securely on your machine after `hf auth login`

**Token Types:**
- **Read Token** - Can download models/datasets, read private repos
- **Write Token** - Can push models/datasets, create repos, modify content
- **Organization Token** - Can act on behalf of an organization

### When Tokens Are Required

**Always Required:**
- Pushing models/datasets to Hub
- Accessing private repositories
- Creating new repositories
- Modifying existing repositories
- Using Hub APIs programmatically

**Not Required:**
- Downloading public models/datasets
- Running jobs that don't interact with Hub
- Reading public repository information

### How to Provide Tokens to Jobs

#### Method 1: Automatic Token (Recommended)

```python
hf_jobs("uv", {
    "script": "your_script.py",
    "secrets": {"HF_TOKEN": "$HF_TOKEN"}  # ✅ Automatic replacement
})
```

**How it works:**
- `$HF_TOKEN` is a placeholder that gets replaced with your actual token
- Uses the token from your logged-in session (`hf auth login`)
- Most secure and convenient method
- Token is encrypted server-side when passed as a secret

**Benefits:**
- No token exposure in code
- Uses your current login session
- Automatically updated if you re-login
- Works seamlessly with MCP tools

#### Method 2: Explicit Token (Not Recommended)

```python
hf_jobs("uv", {
    "script": "your_script.py",
    "secrets": {"HF_TOKEN": "hf_abc123..."}  # ⚠️ Hardcoded token
})
```

**When to use:**
- Only if automatic token doesn't work
- Testing with a specific token
- Organization tokens (use with caution)

**Security concerns:**
- Token visible in code/logs
- Must manually update if token rotates
- Risk of token exposure

#### Method 3: Environment Variable (Less Secure)

```python
hf_jobs("uv", {
    "script": "your_script.py",
    "env": {"HF_TOKEN": "hf_abc123..."}  # ⚠️ Less secure than secrets
})
```

**Difference from secrets:**
- `env` variables are visible in job logs
- `secrets` are encrypted server-side
- Always prefer `secrets` for tokens

### Using Tokens in Scripts

**In your Python script, tokens are available as environment variables:**

```python
# /// script
# dependencies = ["huggingface-hub"]
# ///

import os
from huggingface_hub import HfApi

# Token is automatically available if passed via secrets
token = os.environ.get("HF_TOKEN")

# Use with Hub API
api = HfApi(token=token)

# Or let huggingface_hub auto-detect
api = HfApi()  # Automatically uses HF_TOKEN env var
```

**Best practices:**
- Don't hardcode tokens in scripts
- Use `os.environ.get("HF_TOKEN")` to access
- Let `huggingface_hub` auto-detect when possible
- Verify token exists before Hub operations

### Token Verification

**Check if you're logged in:**
```python
from huggingface_hub import whoami
user_info = whoami()  # Returns your username if authenticated
```

**Verify token in job:**
```python
import os
assert "HF_TOKEN" in os.environ, "HF_TOKEN not found!"
token = os.environ["HF_TOKEN"]
print(f"Token starts with: {token[:7]}...")  # Should start with "hf_"
```

### Common Token Issues

**Error: 401 Unauthorized**
- **Cause:** Token missing or invalid
- **Fix:** Add `secrets={"HF_TOKEN": "$HF_TOKEN"}` to job config
- **Verify:** Check `hf_whoami()` works locally

**Error: 403 Forbidden**
- **Cause:** Token lacks required permissions
- **Fix:** Ensure token has write permissions for push operations
- **Check:** Token type at https://huggingface.co/settings/tokens

**Error: Token not found in environment**
- **Cause:** `secrets` not passed or wrong key name
- **Fix:** Use `secrets={"HF_TOKEN": "$HF_TOKEN"}` (not `env`)
- **Verify:** Script checks `os.environ.get("HF_TOKEN")`

**Error: Repository access denied**
- **Cause:** Token doesn't have access to private repo
- **Fix:** Use token from account with access
- **Check:** Verify repo visibility and your permissions

### Token Security Best Practices

1. **Never commit tokens** - Use `$HF_TOKEN` placeholder or environment variables
2. **Use secrets, not env** - Secrets are encrypted server-side
3. **Rotate tokens regularly** - Generate new tokens periodically
4. **Use minimal permissions** - Create tokens with only needed permissions
5. **Don't share tokens** - Each user should use their own token
6. **Monitor token usage** - Check token activity in Hub settings

### Complete Token Example

```python
# Example: Push results to Hub
hf_jobs("uv", {
    "script": """
# /// script
# dependencies = ["huggingface-hub", "datasets"]
# ///

import os
from huggingface_hub import HfApi
from datasets import Dataset

# Verify token is available
assert "HF_TOKEN" in os.environ, "HF_TOKEN required!"

# Use token for Hub operations
api = HfApi(token=os.environ["HF_TOKEN"])

# Create and push dataset
data = {"text": ["Hello", "World"]}
dataset = Dataset.from_dict(data)
dataset.push_to_hub("username/my-dataset", token=os.environ["HF_TOKEN"])

print("✅ Dataset pushed successfully!")
""",
    "flavor": "cpu-basic",
    "timeout": "30m",
    "secrets": {"HF_TOKEN": "$HF_TOKEN"}  # ✅ Token provided securely
})
```

## Quick Start: Two Approaches

### Approach 1: UV Scripts (Recommended)

UV scripts use PEP 723 inline dependencies for clean, self-contained workloads.

**MCP Tool:**
```python
hf_jobs("uv", {
    "script": """
# /// script
# dependencies = ["transformers", "torch"]
# ///

from transformers import pipeline
import torch

# Your workload here
classifier = pipeline("sentiment-analysis")
result = classifier("I love Hugging Face!")
print(result)
""",
    "flavor": "cpu-basic",
    "timeout": "30m"
})
```

**CLI Equivalent:**
```bash
hf jobs uv run my_script.py --flavor cpu-basic --timeout 30m
```

**Python API:**
```python
from huggingface_hub import run_uv_job
run_uv_job("my_script.py", flavor="cpu-basic", timeout="30m")
```

**Benefits:** Direct MCP tool usage, clean code, dependencies declared inline, no file saving required

**When to use:** Default choice for all workloads, custom logic, any scenario requiring `hf_jobs()`

#### Custom Docker Images for UV Scripts

By default, UV scripts use `ghcr.io/astral-sh/uv:python3.12-bookworm-slim`. For ML workloads with complex dependencies, use pre-built images:

```python
hf_jobs("uv", {
    "script": "inference.py",
    "image": "vllm/vllm-openai:latest",  # Pre-built image with vLLM
    "flavor": "a10g-large"
})
```

**CLI:**
```bash
hf jobs uv run --image vllm/vllm-openai:latest --flavor a10g-large inference.py
```

**Benefits:** Faster startup, pre-installed dependencies, optimized for specific frameworks

#### Python Version

By default, UV scripts use Python 3.12. Specify a different version:

```python
hf_jobs("uv", {
    "script": "my_script.py",
    "python": "3.11",  # Use Python 3.11
    "flavor": "cpu-basic"
})
```

**Python API:**
```python
from huggingface_hub import run_uv_job
run_uv_job("my_script.py", python="3.11")
```

#### Working with Scripts

⚠️ **Important:** There are *two* "script path" stories depending on how you run Jobs:

- **Using the `hf_jobs()` MCP tool (recommended in this repo)**: the `script` value must be **inline code** (a string) or a **URL**. A local filesystem path (like `"./scripts/foo.py"`) won't exist inside the remote container.
- **Using the `hf jobs uv run` CLI**: local file paths **do work** (the CLI uploads your script).

**Common mistake with `hf_jobs()` MCP tool:**

```python
# ❌ Will fail (remote container can't see your local path)
hf_jobs("uv", {"script": "./scripts/foo.py"})
```

**Correct patterns with `hf_jobs()` MCP tool:**

```python
# ✅ Inline: read the local script file and pass its *contents*
from pathlib import Path
script = Path("hf-jobs/scripts/foo.py").read_text()
hf_jobs("uv", {"script": script})

# ✅ URL: host the script somewhere reachable
hf_jobs("uv", {"script": "https://huggingface.co/datasets/uv-scripts/.../raw/main/foo.py"})

# ✅ URL from GitHub
hf_jobs("uv", {"script": "https://raw.githubusercontent.com/huggingface/trl/main/trl/scripts/sft.py"})
```

**CLI equivalent (local paths supported):**

```bash
hf jobs uv run ./scripts/foo.py -- --your --args
```

#### Adding Dependencies at Runtime

Add extra dependencies beyond what's in the PEP 723 header:

```python
hf_jobs("uv", {
    "script": "inference.py",
    "dependencies": ["transformers", "torch>=2.0"],  # Extra deps
    "flavor": "a10g-small"
})
```

**Python API:**
```python
from huggingface_hub import run_uv_job
run_uv_job("inference.py", dependencies=["transformers", "torch>=2.0"])
```

### Approach 2: Docker-Based Jobs

Run jobs with custom Docker images and commands.

**MCP Tool:**
```python
hf_jobs("run", {
    "image": "python:3.12",
    "command": ["python", "-c", "print('Hello from HF Jobs!')"],
    "flavor": "cpu-basic",
    "timeout": "30m"
})
```

**CLI Equivalent:**
```bash
hf jobs run python:3.12 python -c "print('Hello from HF Jobs!')"
```

**Python API:**
```python
from huggingface_hub import run_job
run_job(image="python:3.12", command=["python", "-c", "print('Hello!')"], flavor="cpu-basic")
```

**Benefits:** Full Docker control, use pre-built images, run any command
**When to use:** Need specific Docker images, non-Python workloads, complex environments

**Example with GPU:**
```python
hf_jobs("run", {
    "image": "pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel",
    "command": ["python", "-c", "import torch; print(torch.cuda.get_device_name())"],
    "flavor": "a10g-small",
    "timeout": "1h"
})
```

**Using Hugging Face Spaces as Images:**

You can use Docker images from HF Spaces:
```python
hf_jobs("run", {
    "image": "hf.co/spaces/lhoestq/duckdb",  # Space as Docker image
    "command": ["duckdb", "-c", "SELECT 'Hello from DuckDB!'"],
    "flavor": "cpu-basic"
})
```

**CLI:**
```bash
hf jobs run hf.co/spaces/lhoestq/duckdb duckdb -c "SELECT 'Hello!'"
```

### Finding More UV Scripts on Hub

The `uv-scripts` organization provides ready-to-use UV scripts stored as datasets on Hugging Face Hub:

```python
# Discover available UV script collections
dataset_search({"author": "uv-scripts", "sort": "downloads", "limit": 20})

# Explore a specific collection
hub_repo_details(["uv-scripts/classification"], repo_type="dataset", include_readme=True)
```

**Popular collections:** OCR, classification, synthetic-data, vLLM, dataset-creation

## Hardware Selection

> **Reference:** [HF Jobs Hardware Docs](https://huggingface.co/docs/hub/en/spaces-config-reference) (updated 07/2025)

| Workload Type | Recommended Hardware | Use Case |
|---------------|---------------------|----------|
| Data processing, testing | `cpu-basic`, `cpu-upgrade` | Lightweight tasks |
| Small models, demos | `t4-small` | <1B models, quick tests |
| Medium models | `t4-medium`, `l4x1` | 1-7B models |
| Large models, production | `a10g-small`, `a10g-large` | 7-13B models |
| Very large models | `a100-large` | 13B+ models |
| Batch inference | `a10g-large`, `a100-large` | High-throughput |
| Multi-GPU workloads | `l4x4`, `a10g-largex2`, `a10g-largex4` | Parallel/large models |
| TPU workloads | `v5e-1x1`, `v5e-2x2`, `v5e-2x4` | JAX/Flax, TPU-optimized |

**All Available Flavors:**
- **CPU:** `cpu-basic`, `cpu-upgrade`
- **GPU:** `t4-small`, `t4-medium`, `l4x1`, `l4x4`, `a10g-small`, `a10g-large`, `a10g-largex2`, `a10g-largex4`, `a100-large`
- **TPU:** `v5e-1x1`, `v5e-2x2`, `v5e-2x4`

**Guidelines:**
- Start with smaller hardware for testing
- Scale up based on actual needs
- Use multi-GPU for parallel workloads or large models
- Use TPUs for JAX/Flax workloads
- See `references/hardware_guide.md` for detailed specifications

## Critical: Saving Results

**⚠️ EPHEMERAL ENVIRONMENT—MUST PERSIST RESULTS**

The Jobs environment is temporary. All files are deleted when the job ends. If results aren't persisted, **ALL WORK IS LOST**.

### Persistence Options

**1. Push to Hugging Face Hub (Recommended)**

```python
# Push models
model.push_to_hub("username/model-name", token=os.environ["HF_TOKEN"])

# Push datasets
dataset.push_to_hub("username/dataset-name", token=os.environ["HF_TOKEN"])

# Push artifacts
api.upload_file(
    path_or_fileobj="results.json",
    path_in_repo="results.json",
    repo_id="username/results",
    token=os.environ["HF_TOKEN"]
)
```

**2. Use External Storage**

```python
# Upload to S3, GCS, etc.
import boto3
s3 = boto3.client('s3')
s3.upload_file('results.json', 'my-bucket', 'results.json')
```

**3. Send Results via API**

```python
# POST results to your API
import requests
requests.post("https://your-api.com/results", json=results)
```

### Required Configuration for Hub Push

**In job submission:**
```python
{
    "secrets": {"HF_TOKEN": "$HF_TOKEN"}  # Enables authentication
}
```

**In script:**
```python
import os
from huggingface_hub import HfApi

# Token automatically available from secrets
api = HfApi(token=os.environ.get("HF_TOKEN"))

# Push your results
api.upload_file(...)
```

### Verification Checklist

Before submitting:
- [ ] Results persistence method chosen
- [ ] `secrets={"HF_TOKEN": "$HF_TOKEN"}` if using Hub
- [ ] Script handles missing token gracefully
- [ ] Test persistence path works

**See:** `references/hub_saving.md` for detailed Hub persistence guide

## Timeout Management

**⚠️ DEFAULT: 30 MINUTES**

Jobs automatically stop after the timeout. For long-running tasks like training, always set a custom timeout.

### Setting Timeouts

**MCP Tool:**
```python
{
    "timeout": "2h"   # 2 hours
}
```

**Supported formats:**
- Integer/float: seconds (e.g., `300` = 5 minutes)
- String with suffix: `"5m"` (minutes), `"2h"` (hours), `"1d"` (days)
- Examples: `"90m"`, `"2h"`, `"1.5h"`, `300`, `"1d"`

**Python API:**
```python
from huggingface_hub import run_job, run_uv_job

run_job(image="python:3.12", command=[...], timeout="2h")
run_uv_job("script.py", timeout=7200)  # 2 hours in seconds
```

### Timeout Guidelines

| Scenario | Recommended | Notes |
|----------|-------------|-------|
| Quick test | 10-30 min | Verify setup |
| Data processing | 1-2 hours | Depends on data size |
| Batch inference | 2-4 hours | Large batches |
| Experiments | 4-8 hours | Multiple runs |
| Long-running | 8-24 hours | Production workloads |

**Always add 20-30% buffer** for setup, network delays, and cleanup.

**On timeout:** Job killed immediately, all unsaved progress lost

## Cost Estimation

**General guidelines:**

```
Total Cost = (Hours of runtime) × (Cost per hour)
```

**Example calculations:**

**Quick test:**
- Hardware: cpu-basic ($0.10/hour)
- Time: 15 minutes (0.25 hours)
- Cost: $0.03

**Data processing:**
- Hardware: l4x1 ($2.50/hour)
- Time: 2 hours
- Cost: $5.00

**Batch inference:**
- Hardware: a10g-large ($5/hour)
- Time: 4 hours
- Cost: $20.00

**Cost optimization tips:**
1. Start small - Test on cpu-basic or t4-small
2. Monitor runtime - Set appropriate timeouts
3. Use checkpoints - Resume if job fails
4. Optimize code - Reduce unnecessary compute
5. Choose right hardware - Don't over-provision

## Monitoring and Tracking

### Check Job Status

**MCP Tool:**
```python
# List all jobs
hf_jobs("ps")

# Inspect specific job
hf_jobs("inspect", {"job_id": "your-job-id"})

# View logs
hf_jobs("logs", {"job_id": "your-job-id"})

# Cancel a job
hf_jobs("cancel", {"job_id": "your-job-id"})
```

**Python API:**
```python
from huggingface_hub import list_jobs, inspect_job, fetch_job_logs, cancel_job

# List your jobs
jobs = list_jobs()

# List running jobs only
running = [j for j in list_jobs() if j.status.stage == "RUNNING"]

# Inspect specific job
job_info = inspect_job(job_id="your-job-id")

# View logs
for log in fetch_job_logs(job_id="your-job-id"):
    print(log)

# Cancel a job
cancel_job(job_id="your-job-id")
```

**CLI:**
```bash
hf jobs ps                    # List jobs
hf jobs logs <job-id>         # View logs
hf jobs cancel <job-id>       # Cancel job
```

**Remember:** Wait for user to request status checks. Avoid polling repeatedly.

### Job URLs

After submission, jobs have monitoring URLs:
```
https://huggingface.co/jobs/username/job-id
```

View logs, status, and details in the browser.

### Wait for Multiple Jobs

```python
import time
from huggingface_hub import inspect_job, run_job

# Run multiple jobs
jobs = [run_job(image=img, command=cmd) for img, cmd in workloads]

# Wait for all to complete
for job in jobs:
    while inspect_job(job_id=job.id).status.stage not in ("COMPLETED", "ERROR"):
        time.sleep(10)
```

## Scheduled Jobs

Run jobs on a schedule using CRON expressions or predefined schedules.

**MCP Tool:**
```python
# Schedule a UV script that runs every hour
hf_jobs("scheduled uv", {
    "script": "your_script.py",
    "schedule": "@hourly",
    "flavor": "cpu-basic"
})

# Schedule with CRON syntax
hf_jobs("scheduled uv", {
    "script": "your_script.py",
    "schedule": "0 9 * * 1",  # 9 AM every Monday
    "flavor": "cpu-basic"
})

# Schedule a Docker-based job
hf_jobs("scheduled run", {
    "image": "python:3.12",
    "command": ["python", "-c", "print('Scheduled!')"],
    "schedule": "@daily",
    "flavor": "cpu-basic"
})
```

**Python API:**
```python
from huggingface_hub import create_scheduled_job, create_scheduled_uv_job

# Schedule a Docker job
create_scheduled_job(
    image="python:3.12",
    command=["python", "-c", "print('Running on schedule!')"],
    schedule="@hourly"
)

# Schedule a UV script
create_scheduled_uv_job("my_script.py", schedule="@daily", flavor="cpu-basic")

# Schedule with GPU
create_scheduled_uv_job(
    "ml_inference.py",
    schedule="0 */6 * * *",  # Every 6 hours
    flavor="a10g-small"
)
```

**Available schedules:**
- `@annually`, `@yearly` - Once per year
- `@monthly` - Once per month
- `@weekly` - Once per week
- `@daily` - Once per day
- `@hourly` - Once per hour
- CRON expression - Custom schedule (e.g., `"*/5 * * * *"` for every 5 minutes)

**Manage scheduled jobs:**
```python
# MCP Tool
hf_jobs("scheduled ps")                              # List scheduled jobs
hf_jobs("scheduled inspect", {"job_id": "..."})     # Inspect details
hf_jobs("scheduled suspend", {"job_id": "..."})     # Pause
hf_jobs("scheduled resume", {"job_id": "..."})      # Resume
hf_jobs("scheduled delete", {"job_id": "..."})      # Delete
```

**Python API for management:**
```python
from huggingface_hub import (
    list_scheduled_jobs,
    inspect_scheduled_job,
    suspend_scheduled_job,
    resume_scheduled_job,
    delete_scheduled_job
)

# List all scheduled jobs
scheduled = list_scheduled_jobs()

# Inspect a scheduled job
info = inspect_scheduled_job(scheduled_job_id)

# Suspend (pause) a scheduled job
suspend_scheduled_job(scheduled_job_id)

# Resume a scheduled job
resume_scheduled_job(scheduled_job_id)

# Delete a scheduled job
delete_scheduled_job(scheduled_job_id)
```

## Webhooks: Trigger Jobs on Events

Trigger jobs automatically when changes happen in Hugging Face repositories.

**Python API:**
```python
from huggingface_hub import create_webhook

# Create webhook that triggers a job when a repo changes
webhook = create_webhook(
    job_id=job.id,
    watched=[
        {"type": "user", "name": "your-username"},
        {"type": "org", "name": "your-org-name"}
    ],
    domains=["repo", "discussion"],
    secret="your-secret"
)
```

**How it works:**
1. Webhook listens for changes in watched repositories
2. When triggered, the job runs with `WEBHOOK_PAYLOAD` environment variable
3. Your script can parse the payload to understand what changed

**Use cases:**
- Auto-process new datasets when uploaded
- Trigger inference when models are updated
- Run tests when code changes
- Generate reports on repository activity

**Access webhook payload in script:**
```python
import os
import json

payload = json.loads(os.environ.get("WEBHOOK_PAYLOAD", "{}"))
print(f"Event type: {payload.get('event', {}).get('action')}")
```

See [Webhooks Documentation](https://huggingface.co/docs/huggingface_hub/guides/webhooks) for more details.

## Common Workload Patterns

This repository ships ready-to-run UV scripts in `hf-jobs/scripts/`. Prefer using them instead of inventing new templates.

### Pattern 1: Dataset → Model Responses (vLLM) — `scripts/generate-responses.py`

**What it does:** loads a Hub dataset (chat `messages` or a `prompt` column), applies a model chat template, generates responses with vLLM, and **pushes** the output dataset + dataset card back to the Hub.

**Requires:** GPU + **write** token (it pushes a dataset).

```python
from pathlib import Path

script = Path("hf-jobs/scripts/generate-responses.py").read_text()
hf_jobs("uv", {
    "script": script,
    "script_args": [
        "username/input-dataset",
        "username/output-dataset",
        "--messages-column", "messages",
        "--model-id", "Qwen/Qwen3-30B-A3B-Instruct-2507",
        "--temperature", "0.7",
        "--top-p", "0.8",
        "--max-tokens", "2048",
    ],
    "flavor": "a10g-large",
    "timeout": "4h",
    "secrets": {"HF_TOKEN": "$HF_TOKEN"},
})
```

### Pattern 2: CoT Self-Instruct Synthetic Data — `scripts/cot-self-instruct.py`

**What it does:** generates synthetic prompts/answers via CoT Self-Instruct, optionally filters outputs (answer-consistency / RIP), then **pushes** the generated dataset + dataset card to the Hub.

**Requires:** GPU + **write** token (it pushes a dataset).

```python
from pathlib import Path

script = Path("hf-jobs/scripts/cot-self-instruct.py").read_text()
hf_jobs("uv", {
    "script": script,
    "script_args": [
        "--seed-dataset", "davanstrien/s1k-reasoning",
        "--output-dataset", "username/synthetic-math",
        "--task-type", "reasoning",
        "--num-samples", "5000",
        "--filter-method", "answer-consistency",
    ],
    "flavor": "l4x4",
    "timeout": "8h",
    "secrets": {"HF_TOKEN": "$HF_TOKEN"},
})
```

### Pattern 3: Streaming Dataset Stats (Polars + HF Hub) — `scripts/finepdfs-stats.py`

**What it does:** scans parquet directly from Hub (no 300GB download), computes temporal stats, and (optionally) uploads results to a Hub dataset repo.

**Requires:** CPU is often enough; token needed **only** if you pass `--output-repo` (upload).

```python
from pathlib import Path

script = Path("hf-jobs/scripts/finepdfs-stats.py").read_text()
hf_jobs("uv", {
    "script": script,
    "script_args": [
        "--limit", "10000",
        "--show-plan",
        "--output-repo", "username/finepdfs-temporal-stats",
    ],
    "flavor": "cpu-upgrade",
    "timeout": "2h",
    "env": {"HF_XET_HIGH_PERFORMANCE": "1"},
    "secrets": {"HF_TOKEN": "$HF_TOKEN"},
})
```

## Common Failure Modes

### Out of Memory (OOM)

**Fix:**
1. Reduce batch size or data chunk size
2. Process data in smaller batches
3. Upgrade hardware: cpu → t4 → a10g → a100

### Job Timeout

**Fix:**
1. Check logs for actual runtime
2. Increase timeout with buffer: `"timeout": "3h"`
3. Optimize code for faster execution
4. Process data in chunks

### Hub Push Failures

**Fix:**
1. Add to job: `secrets={"HF_TOKEN": "$HF_TOKEN"}`
2. Verify token in script: `assert "HF_TOKEN" in os.environ`
3. Check token permissions
4. Verify repo exists or can be created

### Missing Dependencies

**Fix:**
Add to PEP 723 header:
```python
# /// script
# dependencies = ["package1", "package2>=1.0.0"]
# ///
```

### Authentication Errors

**Fix:**
1. Check `hf_whoami()` works locally
2. Verify `secrets={"HF_TOKEN": "$HF_TOKEN"}` in job config
3. Re-login: `hf auth login`
4. Check token has required permissions

## Troubleshooting

**Common issues:**
- Job times out → Increase timeout, optimize code
- Results not saved → Check persistence method, verify HF_TOKEN
- Out of Memory → Reduce batch size, upgrade hardware
- Import errors → Add dependencies to PEP 723 header
- Authentication errors → Check token, verify secrets parameter

**See:** `references/troubleshooting.md` for complete troubleshooting guide

## Resources

### References (In This Skill)
- `references/token_usage.md` - Complete token usage guide
- `references/hardware_guide.md` - Hardware specs and selection
- `references/hub_saving.md` - Hub persistence guide
- `references/troubleshooting.md` - Common issues and solutions

### Scripts (In This Skill)
- `scripts/generate-responses.py` - vLLM batch generation: dataset → responses → push to Hub
- `scripts/cot-self-instruct.py` - CoT Self-Instruct synthetic data generation + filtering → push to Hub
- `scripts/finepdfs-stats.py` - Polars streaming stats over `finepdfs-edu` parquet on Hub (optional push)

### External Links

**Official Documentation:**
- [HF Jobs Guide](https://huggingface.co/docs/huggingface_hub/guides/jobs) - Main documentation
- [HF Jobs CLI Reference](https://huggingface.co/docs/huggingface_hub/guides/cli#hf-jobs) - Command line interface
- [HF Jobs API Reference](https://huggingface.co/docs/huggingface_hub/package_reference/hf_api) - Python API details
- [Hardware Flavors Reference](https://huggingface.co/docs/hub/en/spaces-config-reference) - Available hardware

**Related Tools:**
- [UV Scripts Guide](https://docs.astral.sh/uv/guides/scripts/) - PEP 723 inline dependencies
- [UV Scripts Organization](https://huggingface.co/uv-scripts) - Community UV script collection
- [HF Hub Authentication](https://huggingface.co/docs/huggingface_hub/quick-start#authentication) - Token setup
- [Webhooks Documentation](https://huggingface.co/docs/huggingface_hub/guides/webhooks) - Event triggers

## Key Takeaways

1. **Submit scripts inline** - The `script` parameter accepts Python code directly; no file saving required unless user requests
2. **Jobs are asynchronous** - Don't wait/poll; let user check when ready
3. **Always set timeout** - Default 30 min may be insufficient; set appropriate timeout
4. **Always persist results** - Environment is ephemeral; without persistence, all work is lost
5. **Use tokens securely** - Always use `secrets={"HF_TOKEN": "$HF_TOKEN"}` for Hub operations
6. **Choose appropriate hardware** - Start small, scale up based on needs (see hardware guide)
7. **Use UV scripts** - Default to `hf_jobs("uv", {...})` with inline scripts for Python workloads
8. **Handle authentication** - Verify tokens are available before Hub operations
9. **Monitor jobs** - Provide job URLs and status check commands
10. **Optimize costs** - Choose right hardware, set appropriate timeouts

## Quick Reference: MCP Tool vs CLI vs Python API

| Operation | MCP Tool | CLI | Python API |
|-----------|----------|-----|------------|
| Run UV script | `hf_jobs("uv", {...})` | `hf jobs uv run script.py` | `run_uv_job("script.py")` |
| Run Docker job | `hf_jobs("run", {...})` | `hf jobs run image cmd` | `run_job(image, command)` |
| List jobs | `hf_jobs("ps")` | `hf jobs ps` | `list_jobs()` |
| View logs | `hf_jobs("logs", {...})` | `hf jobs logs <id>` | `fetch_job_logs(job_id)` |
| Cancel job | `hf_jobs("cancel", {...})` | `hf jobs cancel <id>` | `cancel_job(job_id)` |
| Schedule UV | `hf_jobs("scheduled uv", {...})` | - | `create_scheduled_uv_job()` |
| Schedule Docker | `hf_jobs("scheduled run", {...})` | - | `create_scheduled_job()` |

Install

Requires askill CLI v1.0+

Metadata

LicenseUnknown
Version-
Updated2w ago
Publisherhuggingface

Tags

apici-cdgithubllmobservabilitypromptingsecuritytesting