
Meta-prompting system for dynamic prompt generation using templates, standards, and patterns. USE WHEN meta-prompting, template generation, prompt optimization, or programmatic prompt composition.
prompting follows the SKILL.md standard. Use the install command to add it to your agent stack.
---
name: Prompting
description: Meta-prompting system for dynamic prompt generation using templates, standards, and patterns. USE WHEN meta-prompting, template generation, prompt optimization, or programmatic prompt composition.
---
## Customization
**Before executing, check for user customizations at:**
`~/.claude/skills/PAI/USER/SKILLCUSTOMIZATIONS/Prompting/`
If this directory exists, load and apply any PREFERENCES.md, configurations, or resources found there. These override default behavior. If the directory does not exist, proceed with skill defaults.
## 🚨 MANDATORY: Voice Notification (REQUIRED BEFORE ANY ACTION)
**You MUST send this notification BEFORE doing anything else when this skill is invoked.**
1. **Send voice notification**:
```bash
curl -s -X POST http://localhost:8888/notify \
-H "Content-Type: application/json" \
-d '{"message": "Running the WORKFLOWNAME workflow in the Prompting skill to ACTION"}' \
> /dev/null 2>&1 &
```
2. **Output text notification**:
```
Running the **WorkflowName** workflow in the **Prompting** skill to ACTION...
```
**This is not optional. Execute this curl command immediately upon skill invocation.**
# Prompting - Meta-Prompting & Template System
**Invoke when:** meta-prompting, template generation, prompt optimization, programmatic prompt composition, creating dynamic agents, generating structured prompts from data.
## Overview
The Prompting skill owns ALL prompt engineering concerns:
- **Standards** - Anthropic best practices, Claude 4.x patterns, empirical research
- **Templates** - Handlebars-based system for programmatic prompt generation
- **Tools** - Template rendering, validation, and composition utilities
- **Patterns** - Reusable prompt primitives and structures
This is the "standard library" for prompt engineering - other skills reference these resources when they need to generate or optimize prompts.
## Core Components
### 1. Standards.md
Complete prompt engineering documentation based on:
- Anthropic's Claude 4.x Best Practices (November 2025)
- Context engineering principles
- The Fabric prompt pattern system
- 1,500+ academic papers on prompt optimization
**Key Topics:**
- Markdown-first design (NO XML tags)
## Usage Examples
### Example 1: Using Briefing Template (Agent Skill)
```typescript
// skills/Agents/Tools/AgentFactory.ts
import { renderTemplate } from '~/.claude/skills/Prompting/Tools/RenderTemplate.ts';
const prompt = renderTemplate('Primitives/Briefing.hbs', {
briefing: { type: 'research' },
agent: { id: 'EN-1', name: 'Skeptical Thinker', personality: {...} },
task: { description: 'Analyze security architecture', questions: [...] },
output_format: { type: 'markdown' }
});
```
### Example 2: Using Structure Template (Workflow)
```yaml
# Data: phased-analysis.yaml
phases:
- name: Discovery
purpose: Identify attack surface
steps:
- action: Map entry points
instructions: List all external interfaces...
- name: Analysis
purpose: Assess vulnerabilities
steps:
- action: Test boundaries
instructions: Probe each entry point...
```
```bash
bun run RenderTemplate.ts \
--template Primitives/Structure.hbs \
--data phased-analysis.yaml
```
### Example 3: Custom Agent with Voice Mapping
```typescript
// Generate specialized agent with appropriate voice
const agent = composeAgent(['security', 'skeptical', 'thorough'], task, traits);
// Returns: { name, traits, voice: 'default', voiceId: 'VOICE_ID...' }
```
## Integration with Other Skills
### Agents Skill
- Uses `Templates/Primitives/Briefing.hbs` for agent context handoff
- Uses `RenderTemplate.ts` to compose dynamic agents
- Maintains agent-specific template: `Agents/Templates/DynamicAgent.hbs`
### Evals Skill
- Uses eval-specific templates: Judge, Rubric, TestCase, Comparison, Report
- Leverages `RenderTemplate.ts` for eval prompt generation
- Eval templates may be stored in `Evals/Templates/` but use Prompting's engine
### Development Skill
- References `Standards.md` for prompt best practices
- Uses `Structure.hbs` for workflow patterns
- Applies `Gate.hbs` for validation checklists
## Token Efficiency
The templating system eliminated **~35,000 tokens (65% reduction)** across PAI:
| Area | Before | After | Savings |
|------|--------|-------|---------|
| SKILL.md Frontmatter | 20,750 | 8,300 | 60% |
| Agent Briefings | 6,400 | 1,900 | 70% |
| Voice Notifications | 6,225 | 725 | 88% |
| Workflow Steps | 7,500 | 3,000 | 60% |
| **TOTAL** | ~53,000 | ~18,000 | **65%** |
## Best Practices
### 1. Separation of Concerns
- **Templates**: Structure and formatting only
- **Data**: Content and parameters (YAML/JSON)
- **Logic**: Rendering and validation (TypeScript)
### 2. Keep Templates Simple
- Avoid complex logic in templates
- Use Handlebars helpers for transformations
- Business logic belongs in TypeScript, not templates
### 3. DRY Principle
- Extract repeated patterns into partials
- Use presets for common configurations
- Single source of truth for definitions
### 4. Version Control
- Templates and data in separate files
- Track changes independently
- Enable A/B testing of structures
## References
**Primary Documentation:**
- `Standards.md` - Complete prompt engineering guide
- `Templates/README.md` - Template system overview (if preserved)
- `Tools/RenderTemplate.ts` - Implementation details
**Research Foundation:**
- Anthropic: "Claude 4.x Best Practices" (November 2025)
- Anthropic: "Effective Context Engineering for AI Agents"
- Anthropic: "Prompt Templates and Variables"
- The Fabric System (January 2024)
- "The Prompt Report" - arXiv:2406.06608
- "The Prompt Canvas" - arXiv:2412.05127
**Related Skills:**
- Agents - Dynamic agent composition
- Evals - LLM-as-Judge prompting
- Development - Spec-driven development patterns
---
**Philosophy:** Prompts that write prompts. Structure is code, content is data. Meta-prompting enables dynamic composition where the same template with different data generates specialized agents, workflows, and evaluation frameworks. This is core PAI DNA - programmatic prompt generation at scale.